Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert-Huang transform

被引:443
作者
Rai, V. K. [1 ]
Mohanty, A. R. [1 ]
机构
[1] Indian Inst Technol, Dept Mech Engn, Kharagpur 721302, W Bengal, India
关键词
discrete Fourier transform; time-frequency approach; wavelet transform; Hilbert-Huang transform; intrinsic mode function; empirical mode decomposition; characteristic defect frequency;
D O I
10.1016/j.ymssp.2006.12.004
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
A number of techniques for detection of faults in rolling element bearing using frequency domain approach exist today. For analysing non-stationary signals arising out of defective rolling element bearings, use of conventional discrete Fourier transform (DFT) has been known to be less efficient. One of the most suited time-frequency approach, wavelet transform (WT) has inherent problems of large computational time and fixed-scale frequency resolution. In view of such constraints, the Hilbert-Huang Transform (HHT) technique provides multi-resolution in various frequency scales and takes the signal's frequency content and their variation into consideration. HHT analyses the vibration signal using intrinsic mode functions (IMFs), which are extracted using the process of empirical mode decomposition (EMD). However, use of Hilbert transform (HT)-based time domain approach in HHT for analysis of bearing vibration signature leads to scope for subjective error in calculation of characteristic defect frequencies (CDF) of the rolling element bearings. The time resolution significantly affects the calculation of corresponding frequency content of the signal. In the present work, FFT of IMFs from HHT process has been incorporated to utilise efficiency of HT in frequency domain. The comparative analysis presented in this paper indicates the effectiveness of using frequency domain approach in HHT and its efficiency as one of the best-suited techniques for bearing fault diagnosis (BFD). (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2607 / 2615
页数:9
相关论文
共 15 条
[1]   A fault diagnosis approach for roller bearings based on EMD method and AR model [J].
Cheng, JS ;
Yu, DJ ;
Yang, Y .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2006, 20 (02) :350-362
[2]   Time-energy density analysis based on wavelet transform [J].
Cheng, JS ;
Yu, DJ ;
Yang, Y .
NDT & E INTERNATIONAL, 2005, 38 (07) :569-572
[3]  
Cohen L., 1995, TIME FREQUENCY ANAL
[4]   The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J].
Huang, NE ;
Shen, Z ;
Long, SR ;
Wu, MLC ;
Shih, HH ;
Zheng, QN ;
Yen, NC ;
Tung, CC ;
Liu, HH .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1998, 454 (1971) :903-995
[5]  
JUNSHENG C, 2006, MECH SYSTEMS SIGNAL, V20, P817
[6]   Gearbox fault diagnosis using empirical mode decomposition and Hilbert spectrum [J].
Liu, B ;
Riemenschneider, S ;
Xu, Y .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2006, 20 (03) :718-734
[7]   Bearing fault diagnosis based on wavelet transform and fuzzy inference [J].
Lou, XS ;
Loparo, KA .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2004, 18 (05) :1077-1095
[8]   VIBRATION MONITORING OF ROLLING ELEMENT BEARINGS BY THE HIGH-FREQUENCY RESONANCE TECHNIQUE - A REVIEW [J].
MCFADDEN, PD ;
SMITH, JD .
TRIBOLOGY INTERNATIONAL, 1984, 17 (01) :3-10
[9]   A comparison study of improved Hilbert-Huang transform and wavelet transform: Application to fault diagnosis for rolling bearing [J].
Peng, ZK ;
Tse, PW ;
Chu, FL .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2005, 19 (05) :974-988
[10]   Application of discrete wavelet transform for detection of ball bearing race faults [J].
Prabhakar, S ;
Mohanty, AR ;
Sekhar, AS .
TRIBOLOGY INTERNATIONAL, 2002, 35 (12) :793-800