Fabrication of Microneedles Using Two Photon Polymerization for Transdermal Delivery of Nanomaterials

被引:47
作者
Doraiswamy, Anand [1 ]
Ovsianikov, Aleksandr [2 ]
Gittard, Shaun D. [1 ]
Monteiro-Riviere, Nancy A. [1 ,3 ]
Crombez, Rene [4 ]
Montalvo, Eva [4 ]
Shen, Weidian [4 ]
Chichkov, Boris N. [2 ]
Narayan, Roger J. [1 ]
机构
[1] N Carolina State Univ, Joint Dept Biomed Engn, Raleigh, NC 27695 USA
[2] Laser Zentrum Hannover, Dept Nanotechnol, D-30419 Hannover, Germany
[3] N Carolina State Univ, Ctr Chem Toxicol Res & Pharmacokinet, Raleigh, NC 27606 USA
[4] Eastern Michigan Univ, Surface Sci & Nanotribol Lab, Ypsilanti, MI 48197 USA
关键词
Microneedle; Transdermal Drug Delivery; Rapid Prototyping; Nanomaterials; Human Epidermal Keratinocytes; QUANTUM DOTS; INSULIN DELIVERY; INSERTION FORCE; NANOPARTICLES; SKIN; NANOCRYSTALS; ARRAY;
D O I
10.1166/jnn.2010.2636
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Microneedle devices for transdermal delivery of nanoscale pharmacologic agents were fabricated out of organically-modified ceramic (Ormocer(R)) materials using two photon polymerization. Out-of-plane hollow microneedle arrays with various aspect ratios were fabricated using this rapid prototyping process. Human epidermal keratinocyte (HEK) viability on Ormocer(R) surfaces fabricated using two photon polymerization was similar to that on control surfaces. Nanoindentation studies were performed to determine hardness and Young's modulus values for Ormocer(R) materials. Microneedles were shown to enable more rapid distribution of the PEG-amine quantum dot solution to the deep epidermis and dermis layers of porcine skin than topical administration. Our results suggest that two photon polymerization may be used to create microneedle arrays for transdermal delivery of nanoscale pharmacologic agents.
引用
收藏
页码:6305 / 6312
页数:8
相关论文
共 42 条
[1]   Nanocrystal targeting in vivo [J].
Åkerman, ME ;
Chan, WCW ;
Laakkonen, P ;
Bhatia, SN ;
Ruoslahti, E .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (20) :12617-12621
[2]   Noninvasive imaging of quantum dots in mice [J].
Ballou, B ;
Lagerholm, BC ;
Ernst, LA ;
Bruchez, MP ;
Waggoner, AS .
BIOCONJUGATE CHEMISTRY, 2004, 15 (01) :79-86
[3]   Semiconductor nanocrystals as fluorescent biological labels [J].
Bruchez, M ;
Moronne, M ;
Gin, P ;
Weiss, S ;
Alivisatos, AP .
SCIENCE, 1998, 281 (5385) :2013-2016
[4]   Preparation of peptide-conjugated quantum dots for tumor vasculature-targeted imaging [J].
Cai, Weibo ;
Chen, Xiaoyuan .
NATURE PROTOCOLS, 2008, 3 (01) :89-96
[5]   Fabrication of array of hollow microcapillaries used for injection of genetic materials into animal/plant cells [J].
Chun, K ;
Hashiguchi, G ;
Toshiyoshi, H ;
Fujita, H .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS, 1999, 38 (3A) :L279-L281
[6]   Microneedle mediated delivery of nanoparticles into human skin [J].
Coulman, Sion A. ;
Anstey, Alexander ;
Gateley, Chris ;
Morrissey, Anthony ;
McLoughlin, Peter ;
Allender, Chris ;
Birchall, James C. .
INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2009, 366 (1-2) :190-200
[7]   Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking [J].
Dahan, M ;
Lévi, S ;
Luccardini, C ;
Rostaing, P ;
Riveau, B ;
Triller, A .
SCIENCE, 2003, 302 (5644) :442-445
[8]   Hollow metal microneedles for insulin delivery to diabetic rats [J].
Davis, SP ;
Martanto, W ;
Allen, MG ;
Prausnitz, MR .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2005, 52 (05) :909-915
[9]   Insertion of microneedles into skin: measurement and prediction of insertion force and needle fracture force [J].
Davis, SP ;
Landis, BJ ;
Adams, ZH ;
Allen, MG ;
Prausnitz, MR .
JOURNAL OF BIOMECHANICS, 2004, 37 (08) :1155-1163
[10]   Targeted quantum dot conjugates for siRNA delivery [J].
Derfus, Austin M. ;
Chen, Alice A. ;
Min, Dal-Hee ;
Ruoslahti, Erkki ;
Bhatia, Sangeeta N. .
BIOCONJUGATE CHEMISTRY, 2007, 18 (05) :1391-1396