hCDC4b, a regulator of cyclin E, as a direct transcriptional target of p53

被引:98
作者
Kimura, T
Gotoh, M
Nakamura, Y
Arakawa, H
机构
[1] Univ Tokyo, Inst Med Sci, Ctr Human Genome, Minato Ku, Tokyo 1088639, Japan
[2] Fukushima Med Univ, Sch Med, Dept Surg 1, Fukushima 9601295, Japan
来源
CANCER SCIENCE | 2003年 / 94卷 / 05期
关键词
F-BOX PROTEINS; CELL-CYCLE; P53-DEPENDENT APOPTOSIS; POTENTIAL MEDIATOR; UBIQUITIN-LIGASE; BREAST-CANCER; DNA-DAMAGE; GENE; FAMILY; PHOSPHORYLATION;
D O I
10.1111/j.1349-7006.2003.tb01460.x
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
To identify p53-target genes we have been using a cDNA-microarray system to assess gene expression in a p53-mutated glioblastoma cell line (U373MG) after adenovirus-mediated transfer of wild-type p53 into the p53-deficient cells. In the work reported here, expression of hCDC4b, which encodes one of the four sub-units of the SCIF (ubiquitin ligase) complex responsible for degradation of cyclin E, was dramatically up-regulated by infection with AD-p53. An electrophoretic mobility-shift assay and a chromatin immunoprecipitation assay indicated that a potential p53-binding site (p53BS) present in exon 1b of the hCDC4 gene was able to bind to p53, and a reporter assay confirmed that this p53BS had p53-dependent transcriptional activity. Expression of endogenous hCDC4b, but not the alternative transcript of this gene, hCDC4a, was induced in a p53-dependent manner in response to genotoxic stresses caused by UV irradiation and adriamycin treatment, suggesting that each transcript has a different functional role. These results suggest that hCDC4b is a previously unrecognized transcriptional target of the p53 protein, and that by negatively regulating cyclin E through induction of hCDC4b, p53 might stop cell-cycle progression at G0-G1. This would represent a novel mechanism for p53-dependent control of the cell cycle, in addition to the well-known p21(WAF1) machinery.
引用
收藏
页码:431 / 436
页数:6
相关论文
共 31 条
  • [1] Identification of a family of human F-box proteins
    Cenciarelli, C
    Chiaur, DS
    Guardavaccaro, D
    Parks, W
    Vidal, M
    Pagano, M
    [J]. CURRENT BIOLOGY, 1999, 9 (20) : 1177 - 1179
  • [2] Turnover of cyclin E by the ubiquitin-proteasome pathway is regulated by cdk2 binding and cyclin phosphorylation
    Clurman, BE
    Sheaff, RJ
    Thress, K
    Groudine, M
    Roberts, JM
    [J]. GENES & DEVELOPMENT, 1996, 10 (16) : 1979 - 1990
  • [3] Courjal F, 1996, INT J CANCER, V69, P247
  • [4] WAF1, A POTENTIAL MEDIATOR OF P53 TUMOR SUPPRESSION
    ELDEIRY, WS
    TOKINO, T
    VELCULESCU, VE
    LEVY, DB
    PARSONS, R
    TRENT, JM
    LIN, D
    MERCER, WE
    KINZLER, KW
    VOGELSTEIN, B
    [J]. CELL, 1993, 75 (04) : 817 - 825
  • [5] Cell cycle checkpoints: Preventing an identity crisis
    Elledge, SJ
    [J]. SCIENCE, 1996, 274 (5293) : 1664 - 1672
  • [6] GREENBLATT MS, 1994, CANCER RES, V54, P4855
  • [7] HARPER JW, 1993, CELL, V75, P805
  • [8] CYCLINS AND CANCER
    HUNTER, T
    PINES, J
    [J]. CELL, 1991, 66 (06) : 1071 - 1074
  • [9] KEYOMARSI K, 1995, ONCOGENE, V11, P941
  • [10] p53: Puzzle and paradigm
    Ko, LJ
    Prives, C
    [J]. GENES & DEVELOPMENT, 1996, 10 (09) : 1054 - 1072