Rapid concentration of deoxyribonucleic acid via Joule heating induced temperature gradient focusing in poly-dimethylsiloxane microfluidic channel

被引:18
作者
Ge, Zhengwei [1 ]
Wang, Wei [2 ]
Yang, Chun [1 ]
机构
[1] Nanyang Technol Univ, Sch Mech & Aerosp Engn, Singapore 639798, Singapore
[2] Singapore Inst Mfg Technol, Singapore 638075, Singapore
关键词
Microfluidics; Deoxyribonucleic acid concentration; Temperature gradient focusing; Joule heating; Electrophoresis; Electroosmosis; SAMPLE STACKING; ZONE-ELECTROPHORESIS; DNA; SEPARATION; PRECONCENTRATION; MICROCHANNEL; CHIP; ENHANCEMENT; MICRODEVICE; ENRICHMENT;
D O I
10.1016/j.aca.2014.12.016
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This paper reports rapid microfluidic electrokinetic concentration of deoxyribonucleic acid (DNA) with the Joule heating induced temperature gradient focusing (TGF) by using our proposed combined AC and DC electric field technique. A peak of 480-fold concentration enhancement of DNA sample is achieved within 40 s in a simple poly-dimethylsiloxane (PDMS) microfluidic channel of a sudden expansion in cross-section. Compared to a sole DC field, the introduction of an AC field can reduce DC field induced back-pressure and produce sufficient Joule heating effects, resulting in higher concentration enhancement. Within such microfluidic channel structure, negative charged DNA analytes can be concentrated at a location where the DNA electrophoretic motion is balanced with the bulk flow driven by DC electroosmosis under an appropriate temperature gradient field. A numerical model accounting for a combined AC and DC field and back-pressure driven flow effects is developed to describe the complex Joule heating induced TGF processes. The experimental observation of DNA concentration phenomena can be explained by the numerical model. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:91 / 97
页数:7
相关论文
共 37 条
[1]   DNA hybridization assays using temperature gradient focusing and peptide nucleic acids [J].
Balss, KM ;
Ross, D ;
Begley, HC ;
Olsen, KG ;
Tarlov, MJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (41) :13474-13479
[2]  
Beckers JL, 2000, ELECTROPHORESIS, V21, P2747, DOI 10.1002/1522-2683(20000801)21:14<2747::AID-ELPS2747>3.0.CO
[3]  
2-Z
[4]   Trapping of DNA by thermophoretic depletion and convection [J].
Braun, D ;
Libchaber, A .
PHYSICAL REVIEW LETTERS, 2002, 89 (18) :1-188103
[5]   PCR-free digital minisatellite tandem repeat genotyping [J].
Chen, Yuchao ;
Seo, Tae Seok .
ELECTROPHORESIS, 2011, 32 (12) :1456-1464
[6]   Sample stacking capillary electrophoretic microdevice for highly sensitive mini Y short tandem repeat genotyping [J].
Chen, Yuchao ;
Choi, Jong Young ;
Choi, Seok Jin ;
Seo, Tae Seok .
ELECTROPHORESIS, 2010, 31 (17) :2974-2980
[7]   Label-free isolation of circulating tumor cells in microfluidic devices: Current research and perspectives [J].
Cima, Igor ;
Yee, Chay Wen ;
Iliescu, Florina S. ;
Phyo, Wai Min ;
Lim, Kiat Hon ;
Iliescu, Ciprian ;
Tan, Min Han .
BIOMICROFLUIDICS, 2013, 7 (01)
[8]   Numerical studies of electrokinetic control of DNA concentration in a closed-end microchannel [J].
Daghighi, Yasaman ;
Li, Dongqing .
ELECTROPHORESIS, 2010, 31 (05) :868-878
[9]   Electrokinetic trapping and concentration enrichment of DNA in a microfluidic channel [J].
Dai, JH ;
Ito, T ;
Sun, L ;
Crooks, RM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (43) :13026-13027
[10]   Long-range and superfast trapping of DNA molecules in an ac electrokinetic funnel [J].
Du, Jiong-Rong ;
Juang, Yi-Je ;
Wu, Jie-Tang ;
Wei, Hsien-Hung .
BIOMICROFLUIDICS, 2008, 2 (04)