Interface microstructure and mechanical properties of selective laser melted multilayer functionally graded materials

被引:38
作者
Wang Di [1 ]
Deng Guo-wei [1 ]
Yang Yong-qiang [1 ]
Chen Jie [1 ]
Wu Wei-hui [2 ]
Wang Hao-liang [3 ]
Tan Chao-lin [1 ]
机构
[1] South China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Peoples R China
[2] Shaoguan Univ, Sch Intelligent Engn, Shaoguan 512005, Peoples R China
[3] Dongguan Univ Technol, Sch Mech Engn, Dongguan 523830, Peoples R China
基金
中国国家自然科学基金;
关键词
selective laser melting; multilayer functionally graded material; interfacial characterization; crack defects; mechanical properties; METALLIC MATERIALS; STAINLESS-STEEL; SLM PARTS; MULTIMATERIAL; FUSION;
D O I
10.1007/s11771-021-4687-9
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
Functionally graded material (FGM) can tailor properties of components such as wear resistance, corrosion resistance, and functionality to enhance the overall performance. The selective laser melting (SLM) additive manufacturing highlights the capability in manufacturing FGMs with a high geometrical complexity and manufacture flexibility. In this work, the 316L/CuSn10/18Ni300/CoCr four-type materials FGMs were fabricated using SLM. The microstructure and properties of the FGMs were investigated to reveal the effects of SLM processing parameters on the defects. A large number of microcracks were found at the 316L/CuSn10 interface, which initiated from the fusion boundary of 316L region and extended along the building direction. The elastic modulus and nano-hardness in the 18Ni300/CoCr fusion zone decreased significantly, less than those in the 18Ni300 region or the CoCr region. The iron and copper elements were well diffused in the 316L/CuSn10 fusion zone, while elements in the CuSn10/18Ni300 and the 18Ni300/CoCr fusion zones showed significantly gradient transitions. Compared with other regions, the width of the CuSn10/18Ni300 interface and the CuSn10 region expand significantly. The mechanisms of materials fusion and crack generation at the 316L/CuSn10 interface were discussed. In addition, FGM structures without macro-crack were built by only altering the deposition subsequence of 316L and CuSn10, which provides a guide for the additive manufacturing of FGM structures.
引用
收藏
页码:1155 / 1169
页数:15
相关论文
共 37 条
[1]   Additive manufacturing of multi-material structures [J].
Bandyopadhyay, Amit ;
Heer, Bryan .
MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2018, 129 :1-16
[2]   Additive manufacturing of a functionally graded material from Ti-6Al-4V to Invar: Experimental characterization and thermodynamic calculations [J].
Bobbio, Lourdes D. ;
Otis, Richard A. ;
Borgonia, John Paul ;
Dillon, R. Peter ;
Shapiro, Andrew A. ;
Liu, Zi-Kui ;
Beese, Allison M. .
ACTA MATERIALIA, 2017, 127 :133-142
[3]   The influence of the laser scan strategy on grain structure and cracking behaviour in SLM powder-bed fabricated nickel superalloy [J].
Carter, Luke N. ;
Martin, Christopher ;
Withers, Philip J. ;
Attallah, Moataz M. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 615 :338-347
[4]   Laser additive manufacturing of layered TiB2/Ti6Al4V multi-material parts: Understanding thermal behavior evolution [J].
Chen, Caiyan ;
Gu, Dongdong ;
Dai, Donghua ;
Du, Lei ;
Wang, Rui ;
Ma, Chenglong ;
Xia, Mujian .
OPTICS AND LASER TECHNOLOGY, 2019, 119
[5]   Interfacial microstructure and mechanical. properties of 316L /CuSn10 multi-material bimetallic structure fabricated by selective laser melting [J].
Chen, Jie ;
Yang, Yongqiang ;
Song, Changhui ;
Zhang, Mingkang ;
Wu, Shibiao ;
Wang, Di .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2019, 752 :75-85
[6]   Influence of additive multilayer feature on thermodynamics, stress and microstructure development during laser 3D printing of aluminum-based material [J].
Dai, Donghua ;
Gu, Dongdong ;
Poprawe, Reinhart ;
Xia, Mujian .
SCIENCE BULLETIN, 2017, 62 (11) :779-787
[7]   Multi-material selective laser melting of Fe/Al-12Si components [J].
Demir, Ali Gökhan ;
Previtali, Barbara .
Manufacturing Letters, 2017, 11 :8-11
[8]   Metal Additive Manufacturing: A Review [J].
Frazier, William E. .
JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2014, 23 (06) :1917-1928
[9]  
Gurianov D. A., 2019, IOP Conference Series: Materials Science and Engineering, V597, DOI 10.1088/1757-899X/597/1/012043
[10]   Joining of Inconel 718 and 316 Stainless Steel using electron beam melting additive manufacturing technology [J].
Hinojos, Alejandro ;
Mireles, Jorge ;
Reichardt, Ashley ;
Frigola, Pedro ;
Hosemann, Peter ;
Murr, Lawrence E. ;
Wicker, Ryan B. .
MATERIALS & DESIGN, 2016, 94 :17-27