High-Performance Computing Applied in Project UBEST

被引:0
作者
Martins, Ricardo [1 ]
Rogeiro, Joao [1 ]
Rodrigues, Marta [1 ]
Fortunato, Andre B. [1 ]
Oliveira, Anabela [1 ]
Azevedo, Alberto [1 ]
机构
[1] LNEC Natl Lab Civil Engn, Hydraul & Environm Dept, Lisbon, Portugal
来源
BUSINESS INFORMATION SYSTEMS WORKSHOPS (BIS 2018) | 2019年 / 339卷
关键词
HPC; Estuaries; Numerical models; Parallel computing; Forecasts; SCHISM; UBEST;
D O I
10.1007/978-3-030-04849-5_44
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
UBEST aims at improving the global understanding of present and future biogeochemical buffering capacity of estuaries through the development of Observatories, computational web-portals that integrate field observation and real-time MPI (Message Passing Interface) numerical simulations. HPC (High-Performance Computing) is applied in Observatories to serve both on-the-fly frontend user requests for multiple spatial analyses and to speed up backend's forecast hydrodynamic and ecological simulations based on unstructured grids. Backend simulations are performed using the open-source SCHISM (Semi-implicit Cross-scale Hydroscience Integrated System Model). Python programming language will be used in this project to automate the MPI simulations and the web-portal in Django.
引用
收藏
页码:507 / 516
页数:10
相关论文
共 50 条
  • [41] GREEN AND SUSTAINABLE HIGH-PERFORMANCE COMPUTING WITH SMARTPHONE CROWD COMPUTING: BENEFITS, ENABLERS, AND CHALLENGES
    Pramanik, Pijush Kanti Dutta
    Pal, Saurabh
    Choudhury, Prasenjit
    [J]. SCALABLE COMPUTING-PRACTICE AND EXPERIENCE, 2019, 20 (02): : 259 - 283
  • [42] Predictive Simulation for Surface Fault Occurrence Using High-Performance Computing
    Sawada, Masataka
    Haba, Kazumoto
    Hori, Muneo
    [J]. GEOHAZARDS, 2022, 3 (01): : 88 - 105
  • [43] Green Code Energy Efficiency in the Source Code for High-Performance Computing
    Corral-Garcia, Javier
    Gomez-Martin, Cesar
    Gonzalez-Sanchez, Jose-Luis
    [J]. 2015 10TH IBERIAN CONFERENCE ON INFORMATION SYSTEMS AND TECHNOLOGIES (CISTI), 2015,
  • [44] Open XDMoD: A Tool for the Comprehensive Management of High-Performance Computing Resources
    Palmer, Jeffrey T.
    Gallo, Steven M.
    Furlani, Thomas R.
    Jones, Matthew D.
    DeLeon, Robert L.
    White, Joseph P.
    Simakov, Nikolay
    Patra, Abani K.
    Sperhac, Jeanette
    Yearke, Thomas
    Rathsam, Ryan
    Innus, Martins
    Cornelius, Cynthia D.
    Browne, James C.
    Barth, William L.
    Evans, Richard T.
    [J]. COMPUTING IN SCIENCE & ENGINEERING, 2015, 17 (04) : 52 - 62
  • [45] Call for Papers Special Issue on High-Performance Computing for the Next Decade
    Yutong Lu
    Zizhong Chen
    Juan Chen
    Chao Li
    [J]. TsinghuaScienceandTechnology, 2018, 23 (03) : 367 - 368
  • [46] Java']Java as a front-end to high-performance computing resources
    Sills, AJ
    Hawick, KA
    [J]. INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED PROCESSING TECHNIQUES AND APPLICATIONS, VOLS I-IV, PROCEEDINGS, 1998, : 107 - 114
  • [47] Enabling Docker Containers for High-Performance and Many-Task Computing
    Azab, Abdulrahman
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON CLOUD ENGINEERING (IC2E 2017), 2017, : 279 - 285
  • [48] Group Based Job Scheduling to Increase the High-Performance Computing Efficiency
    Lyakhovets, D. S.
    Baranov, A. V.
    [J]. LOBACHEVSKII JOURNAL OF MATHEMATICS, 2020, 41 (12) : 2558 - 2565
  • [49] VoIP Smart Speech Encoding Mechanism Using High-Performance Computing
    Nagaraja, G. S.
    Koundinya, Anjan K.
    Thippeswamy, G.
    Mahesh, G.
    Hegde, Vinay V.
    [J]. SMART INTELLIGENT COMPUTING AND APPLICATIONS, VOL 2, 2020, 160 : 577 - 583
  • [50] Smart predictive maintenance for high-performance computing systems: a literature review
    Lima, Andre Luis da Cunha Dantas
    Aranha, Vitor Moraes
    Carvalho, Caio Jordao de Lima
    Nascimento, Erick Giovani Sperandio
    [J]. JOURNAL OF SUPERCOMPUTING, 2021, 77 (11) : 13494 - 13513