Giant power factors in p- and n-type large-area graphene films on a flexible plastic substrate

被引:42
作者
Kanahashi, Kaito [1 ]
Ishihara, Masatou [2 ]
Hasegawa, Masataka [2 ]
Ohta, Hiromichi [3 ]
Takenobu, Taishi [1 ,4 ]
机构
[1] Waseda Univ, Dept Adv Sci & Engn, Tokyo 1698555, Japan
[2] Natl Inst Adv Ind Sci & Technol, Nanomat Res Inst, Ibaraki 3058565, Japan
[3] Hokkaido Univ, Res Inst Elect Sci, Sapporo, Hokkaido 0010020, Japan
[4] Nagoya Univ, Dept Appl Phys, Nagoya, Aichi 4648603, Japan
关键词
THERMOELECTRIC PROPERTIES; CARBON NANOTUBES; THERMOPOWER;
D O I
10.1038/s41699-019-0128-0
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This study reports on the thermoelectric properties of large-area graphene films grown by chemical vapor deposition (CVD) methods. Using the electric double layer gating technique, both the continuous doping of hole or electron carriers and modulation of the Fermi energy are achieved, leading to wide-range control of the Seebeck coefficient and electrical conductivity. Consequently, the maximum power factors of the CVD-grown large-area graphene films are 6.93 and 3.29 mW m(-1) K-2 for p- and n-type carrier doping, respectively. These results are the best values among large-scale flexible materials, such as organic conducting polymers and carbon nanotubes, suggesting that CVD-grown large-area graphene films have potential for thermoelectric applications.
引用
收藏
页数:6
相关论文
共 33 条
[1]   Resistivity and thermopower of graphene made by chemical vapor deposition technique [J].
Babichev, A. V. ;
Gasumyants, V. E. ;
Butko, V. Y. .
JOURNAL OF APPLIED PHYSICS, 2013, 113 (07)
[2]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/NNANO.2010.132, 10.1038/nnano.2010.132]
[3]   Flexible thermoelectric materials and device optimization for wearable energy harvesting [J].
Bahk, Je-Hyeong ;
Fang, Haiyu ;
Yazawa, Kazuaki ;
Shakouri, Ali .
JOURNAL OF MATERIALS CHEMISTRY C, 2015, 3 (40) :10362-10374
[4]  
Bubnova O, 2014, NAT MATER, V13, P190, DOI [10.1038/nmat3824, 10.1038/NMAT3824]
[5]   Lattice vibrational modes and phonon thermal conductivity of monolayer MoS2 [J].
Cai, Yongqing ;
Lan, Jinghua ;
Zhang, Gang ;
Zhang, Yong-Wei .
PHYSICAL REVIEW B, 2014, 89 (03)
[6]   Thermoelectric Power in Bilayer Graphene Device with Ionic Liquid Gating [J].
Chien, Yung-Yu ;
Yuan, Hongtao ;
Wang, Chang-Ran ;
Lee, Wei-Li .
SCIENTIFIC REPORTS, 2016, 6
[7]   Outstanding Low Temperature Thermoelectric Power Factor from Completely Organic Thin Films Enabled by Multidimensional Conjugated Nanomaterials [J].
Cho, Chungyeon ;
Wallace, Kevin L. ;
Tzeng, Ping ;
Hsu, Jui-Hung ;
Yu, Choongho ;
Grunlan, Jaime C. .
ADVANCED ENERGY MATERIALS, 2016, 6 (07)
[8]   Flexible and Robust Thermoelectric Generators Based on All-Carbon Nanotube Yarn without Metal Electrodes [J].
Choi, Jaeyoo ;
Jung, Yeonsu ;
Yang, Seung Jae ;
Oh, Jun Young ;
Oh, Jinwoo ;
Jo, Kiyoung ;
Son, Jeong Gon ;
Moon, Seung Eon ;
Park, Chong Rae ;
Kim, Heesuk .
ACS NANO, 2017, 11 (08) :7608-7614
[9]   High thermoelectricpower factor in graphene/hBN devices [J].
Duan, Junxi ;
Wang, Xiaoming ;
Lai, Xinyuan ;
Li, Guohong ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Zebarjadi, Mona ;
Andrei, Eva Y. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (50) :14272-14276
[10]   High thermoelectric power factor in two-dimensional crystals of MoS2 [J].
Hippalgaonkar, Kedar ;
Wang, Ying ;
Ye, Yu ;
Qiu, Diana Y. ;
Zhu, Hanyu ;
Wang, Yuan ;
Moore, Joel ;
Louie, Steven G. ;
Zhang, Xiang .
PHYSICAL REVIEW B, 2017, 95 (11)