Energy-efficient computing-in-memory architecture for AI processor: device, circuit, architecture perspective

被引:14
作者
Chang, Liang [1 ]
Li, Chenglong [1 ]
Zhang, Zhaomin [1 ]
Xiao, Jianbiao [1 ]
Liu, Qingsong [1 ]
Zhu, Zhen [1 ]
Li, Weihang [1 ]
Zhu, Zixuan [1 ]
Yang, Siqi [1 ]
Zhou, Jun [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu 611731, Peoples R China
基金
国家重点研发计划;
关键词
energy efficiency; computing-in-memory; non-volatile memory; test demonstrators; AI processor; SRAM MACRO; UNIT-MACRO; ACCELERATOR; COMPUTATION;
D O I
10.1007/s11432-021-3234-0
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An artificial intelligence (AI) processor is a promising solution for energy-efficient data processing, including health monitoring and image/voice recognition. However, data movements between compute part and memory induce memory wall and power wall challenges to the conventional computing architecture. Recently, the memory-centric architecture has been revised to solve the data movement issue, where the memory is equipped with the compute-capable memory technique, namely, computing-in-memory (CIM). In this paper, we analyze the requirement of AI algorithms on the data movement and low power requirement of AI processors. In addition, we introduce the story of CIM and implementation methodologies of CIM architecture. Furthermore, we present several novel solutions beyond traditional analog-digital mixed static random-access memory (SRAM)-based CIM architecture. Finally, recent CIM tape-out studies are listed and discussed.
引用
收藏
页数:15
相关论文
共 94 条
[61]  
Sayal A, 2019, ISSCC DIG TECH PAP I, V62, P228, DOI 10.1109/ISSCC.2019.8662510
[62]   Temporal correlation detection using computational phase-change memory [J].
Sebastian, Abu ;
Tuma, Tomas ;
Papandreou, Nikolaos ;
Le Gallo, Manuel ;
Kull, Lukas ;
Parnell, Thomas ;
Eleftheriou, Evangelos .
NATURE COMMUNICATIONS, 2017, 8
[63]   DRISA: A DRAM-based Reconfigurable In-Situ Accelerator [J].
Li, Shuangchen ;
Niu, Dimin ;
Malladi, Krishna T. ;
Zheng, Hongzhong ;
Brennan, Bob ;
Xie, Yuan .
50TH ANNUAL IEEE/ACM INTERNATIONAL SYMPOSIUM ON MICROARCHITECTURE (MICRO), 2017, :288-301
[64]  
Si X, 2020, ISSCC DIG TECH PAP I, P246, DOI [10.1109/ISSCC19947.2020.9062995, 10.1109/isscc19947.2020.9062995]
[65]   A Twin-8T SRAM Computation-in-Memory Unit-Macro for Multibit CNN-Based AI Edge Processors [J].
Si, Xin ;
Chen, Jia-Jing ;
Tu, Yung-Ning ;
Huang, Wei-Hsing ;
Wang, Jing-Hong ;
Chiu, Yen-Cheng ;
Wei, Wei-Chen ;
Wu, Ssu-Yen ;
Sun, Xiaoyu ;
Liu, Rui ;
Yu, Shimeng ;
Liu, Ren-Shuo ;
Hsieh, Chih-Cheng ;
Tang, Kea-Tiong ;
Li, Qiang ;
Chang, Meng-Fan .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2020, 55 (01) :189-202
[66]   A 2TnC ferroelectric memory gain cell suitable for compute-in-memory and neuromorphic application [J].
Slesazeck, Stefan ;
Ravsher, Taras ;
Havel, Viktor ;
Breyer, Evelyn T. ;
Mulaosmanovic, Halid ;
Mikolajick, Thomas .
2019 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2019,
[67]  
Su F, 2017, S VLSI TECH, pC260
[68]   15.2 A 28nm 64Kb Inference-Training Two-Way Transpose Multibit 6T SRAM Compute-in-Memory Macro for AI Edge Chips [J].
Su, Jian-Wei ;
Si, Xin ;
Chou, Yen-Chi ;
Chang, Ting-Wei ;
Huang, Wei-Hsing ;
Tu, Yung-Ning ;
Liu, Ruhui ;
Lu, Pei-Jung ;
Liu, Ta-Wei ;
Wang, Jing-Hong ;
Zhang, Zhixiao ;
Jiang, Hongwu ;
Huang, Shanshi ;
Lo, Chung-Chuan ;
Liu, Ren-Shuo ;
Hsieh, Chih-Cheng ;
Tang, Kea-Tiong ;
Sheu, Shyh-Shyuan ;
Li, Sih-Han ;
Lee, Heng-Yuan ;
Chang, Shih-Chieh ;
Yu, Shimeng ;
Chang, Meng-Fan .
2020 IEEE INTERNATIONAL SOLID- STATE CIRCUITS CONFERENCE (ISSCC), 2020, :240-+
[69]  
Valavi H, 2018, SYMP VLSI CIRCUITS, P141, DOI 10.1109/VLSIC.2018.8502421
[70]  
Wan W., 2020, PROC IEEE S VLSI TEC, P1, DOI DOI 10.1109/VLSITECHNOLOGY18217.2020.9265066