Energy-efficient computing-in-memory architecture for AI processor: device, circuit, architecture perspective

被引:13
作者
Chang, Liang [1 ]
Li, Chenglong [1 ]
Zhang, Zhaomin [1 ]
Xiao, Jianbiao [1 ]
Liu, Qingsong [1 ]
Zhu, Zhen [1 ]
Li, Weihang [1 ]
Zhu, Zixuan [1 ]
Yang, Siqi [1 ]
Zhou, Jun [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu 611731, Peoples R China
基金
国家重点研发计划;
关键词
energy efficiency; computing-in-memory; non-volatile memory; test demonstrators; AI processor; SRAM MACRO; UNIT-MACRO; ACCELERATOR; COMPUTATION;
D O I
10.1007/s11432-021-3234-0
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An artificial intelligence (AI) processor is a promising solution for energy-efficient data processing, including health monitoring and image/voice recognition. However, data movements between compute part and memory induce memory wall and power wall challenges to the conventional computing architecture. Recently, the memory-centric architecture has been revised to solve the data movement issue, where the memory is equipped with the compute-capable memory technique, namely, computing-in-memory (CIM). In this paper, we analyze the requirement of AI algorithms on the data movement and low power requirement of AI processors. In addition, we introduce the story of CIM and implementation methodologies of CIM architecture. Furthermore, we present several novel solutions beyond traditional analog-digital mixed static random-access memory (SRAM)-based CIM architecture. Finally, recent CIM tape-out studies are listed and discussed.
引用
收藏
页数:15
相关论文
共 94 条
  • [61] Sayal A, 2019, ISSCC DIG TECH PAP I, V62, P228, DOI 10.1109/ISSCC.2019.8662510
  • [62] Temporal correlation detection using computational phase-change memory
    Sebastian, Abu
    Tuma, Tomas
    Papandreou, Nikolaos
    Le Gallo, Manuel
    Kull, Lukas
    Parnell, Thomas
    Eleftheriou, Evangelos
    [J]. NATURE COMMUNICATIONS, 2017, 8
  • [63] DRISA: A DRAM-based Reconfigurable In-Situ Accelerator
    Li, Shuangchen
    Niu, Dimin
    Malladi, Krishna T.
    Zheng, Hongzhong
    Brennan, Bob
    Xie, Yuan
    [J]. 50TH ANNUAL IEEE/ACM INTERNATIONAL SYMPOSIUM ON MICROARCHITECTURE (MICRO), 2017, : 288 - 301
  • [64] Si X, 2020, ISSCC DIG TECH PAP I, P246, DOI [10.1109/isscc19947.2020.9062995, 10.1109/ISSCC19947.2020.9062995]
  • [65] A Twin-8T SRAM Computation-in-Memory Unit-Macro for Multibit CNN-Based AI Edge Processors
    Si, Xin
    Chen, Jia-Jing
    Tu, Yung-Ning
    Huang, Wei-Hsing
    Wang, Jing-Hong
    Chiu, Yen-Cheng
    Wei, Wei-Chen
    Wu, Ssu-Yen
    Sun, Xiaoyu
    Liu, Rui
    Yu, Shimeng
    Liu, Ren-Shuo
    Hsieh, Chih-Cheng
    Tang, Kea-Tiong
    Li, Qiang
    Chang, Meng-Fan
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2020, 55 (01) : 189 - 202
  • [66] A 2TnC ferroelectric memory gain cell suitable for compute-in-memory and neuromorphic application
    Slesazeck, Stefan
    Ravsher, Taras
    Havel, Viktor
    Breyer, Evelyn T.
    Mulaosmanovic, Halid
    Mikolajick, Thomas
    [J]. 2019 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2019,
  • [67] Su F, 2017, S VLSI TECH, pC260
  • [68] 15.2 A 28nm 64Kb Inference-Training Two-Way Transpose Multibit 6T SRAM Compute-in-Memory Macro for AI Edge Chips
    Su, Jian-Wei
    Si, Xin
    Chou, Yen-Chi
    Chang, Ting-Wei
    Huang, Wei-Hsing
    Tu, Yung-Ning
    Liu, Ruhui
    Lu, Pei-Jung
    Liu, Ta-Wei
    Wang, Jing-Hong
    Zhang, Zhixiao
    Jiang, Hongwu
    Huang, Shanshi
    Lo, Chung-Chuan
    Liu, Ren-Shuo
    Hsieh, Chih-Cheng
    Tang, Kea-Tiong
    Sheu, Shyh-Shyuan
    Li, Sih-Han
    Lee, Heng-Yuan
    Chang, Shih-Chieh
    Yu, Shimeng
    Chang, Meng-Fan
    [J]. 2020 IEEE INTERNATIONAL SOLID- STATE CIRCUITS CONFERENCE (ISSCC), 2020, : 240 - +
  • [69] Valavi H, 2018, SYMP VLSI CIRCUITS, P141, DOI 10.1109/VLSIC.2018.8502421
  • [70] Wan W., 2020, PROC IEEE S VLSI TEC, P1