Exploiting Argument Information to Improve Event Detection via Supervised Attention Mechanisms

被引:147
作者
Liu, Shulin [1 ,2 ]
Chen, Yubo [1 ,2 ]
Liu, Kang [1 ]
Zhao, Jun [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
来源
PROCEEDINGS OF THE 55TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2017), VOL 1 | 2017年
关键词
D O I
10.18653/v1/P17-1164
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper tackles the task of event detection (ED), which involves identifying and categorizing events. We argue that arguments provide significant clues to this task, but they are either completely ignored or exploited in an indirect manner in existing detection approaches. In this work, we propose to exploit argument information explicitly for ED via supervised attention mechanisms. In specific, we systematically investigate the proposed model under the supervision of different attention strategies. Experimental results show that our approach advances state-of-the-arts and achieves the best F1 score on ACE 2005 dataset.
引用
收藏
页码:1789 / 1798
页数:10
相关论文
共 28 条
[1]  
Ahn D., 2006, P WORKSH ANN REAS TI, P1, DOI DOI 10.3115/1629235.1629236
[2]  
Baker C.F., 1998, P 36 ANN M ASS COMP, P86, DOI DOI 10.3115/980845.980860
[3]  
Bengio Y, 2001, ADV NEUR IN, V13, P932
[4]  
Chen YB, 2015, PROCEEDINGS OF THE 53RD ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 7TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING, VOL 1, P167
[5]  
Erhan D, 2010, J MACH LEARN RES, V11, P625
[6]  
Hagan M.T., 1996, Neural Network Design
[7]  
Hinton G. E., 2012, ABS12070580 CORR
[8]  
Hong Y., 2011, P 49 ANN M ASS COMP, P1127
[9]  
Ji H., 2008, P ACL 08 HLT, P254
[10]  
Kim Y., 2014, P 2014 C EMP METH NA, P1746, DOI [DOI 10.3115/V1/D14-1181, 10.3115/v1/D14-1181]