Using semantic web rules to reason on an ontology of pseudogenes

被引:14
作者
Holford, Matthew E. [1 ]
Khurana, Ekta [2 ]
Cheung, Kei-Hoi [1 ,3 ,4 ,5 ]
Gerstein, Mark [1 ,2 ,3 ]
机构
[1] Yale Univ, Program Computat Biol & Bioinformat, New Haven, CT 06520 USA
[2] Yale Univ, Dept Mol Biophys & Biochem, New Haven, CT 06520 USA
[3] Yale Univ, Dept Comp Sci, New Haven, CT 06520 USA
[4] Yale Univ, Ctr Med Informat, New Haven, CT 06520 USA
[5] Yale Univ, Dept Genet, New Haven, CT 06520 USA
基金
美国国家卫生研究院;
关键词
EVOLUTION; DATABASE;
D O I
10.1093/bioinformatics/btq173
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Recent years have seen the development of a wide range of biomedical ontologies. Notable among these is Sequence Ontology (SO) which offers a rich hierarchy of terms and relationships that can be used to annotate genomic data. Well-designed formal ontologies allow data to be reasoned upon in a consistent and logically sound way and can lead to the discovery of new relationships. The Semantic Web Rules Language (SWRL) augments the capabilities of a reasoner by allowing the creation of conditional rules. To date, however, formal reasoning, especially the use of SWRL rules, has not been widely used in biomedicine. Results: We have built a knowledge base of human pseudogenes, extending the existing SO framework to incorporate additional attributes. In particular, we have defined the relationships between pseudogenes and segmental duplications. We then created a series of logical rules using SWRL to answer research questions and to annotate our pseudogenes appropriately. Finally, we were left with a knowledge base which could be queried to discover information about human pseudogene evolution.
引用
收藏
页码:i71 / i78
页数:8
相关论文
共 19 条
[1]  
[Anonymous], 2014, SPARQL
[2]   Primate segmental duplications: crucibles of evolution, diversity and disease [J].
Bailey, Jeffrey A. ;
Eichler, Evan E. .
NATURE REVIEWS GENETICS, 2006, 7 (07) :552-564
[3]  
BECHHOFER S, 2003, INT SEM WEB C, P659
[4]  
DING Z, 2004, P 37 HAW INT C SYST
[5]   Sequence Ontology Annotation Guide [J].
Eilbeck, K ;
Lewes, SE .
COMPARATIVE AND FUNCTIONAL GENOMICS, 2004, 5 (08) :642-647
[6]   The Sequence Ontology: a tool for the unification of genome annotations [J].
Eilbeck, K ;
Lewis, SE ;
Mungall, CJ ;
Yandell, M ;
Stein, L ;
Durbin, R ;
Ashburner, M .
GENOME BIOLOGY, 2005, 6 (05)
[7]   The Ensembl genome database project [J].
Hubbard, T ;
Barker, D ;
Birney, E ;
Cameron, G ;
Chen, Y ;
Clark, L ;
Cox, T ;
Cuff, J ;
Curwen, V ;
Down, T ;
Durbin, R ;
Eyras, E ;
Gilbert, J ;
Hammond, M ;
Huminiecki, L ;
Kasprzyk, A ;
Lehvaslaiho, H ;
Lijnzaad, P ;
Melsopp, C ;
Mongin, E ;
Pettett, R ;
Pocock, M ;
Potter, S ;
Rust, A ;
Schmidt, E ;
Searle, S ;
Slater, G ;
Smith, J ;
Spooner, W ;
Stabenau, A ;
Stalker, J ;
Stupka, E ;
Ureta-Vidal, A ;
Vastrik, I ;
Clamp, M .
NUCLEIC ACIDS RESEARCH, 2002, 30 (01) :38-41
[8]   Pseudogene.org: a comprehensive database and comparison platform for pseudogene annotation [J].
Karro, John E. ;
Yan, Yangpan ;
Zheng, Deyou ;
Zhang, Zhaolei ;
Carriero, Nicholas ;
Cayting, Philip ;
Harrrison, Paul ;
Gerstein, Mark .
NUCLEIC ACIDS RESEARCH, 2007, 35 :D55-D60
[9]   Pseudofam: the pseudogene families database [J].
Lam, Hugo Y. K. ;
Khurana, Ekta ;
Fang, Gang ;
Cayting, Philip ;
Carriero, Nicholas ;
Cheung, Kei-Hoi ;
Gerstein, Mark B. .
NUCLEIC ACIDS RESEARCH, 2009, 37 :D738-D743
[10]   A Chado case study: an ontology-based modular schema for representing genome-associated biological information [J].
Mungall, Christopher J. ;
Emmert, David B. .
BIOINFORMATICS, 2007, 23 (13) :I337-I346