Localization dynamics of excitons in disordered semiconductor quantum wells

被引:10
作者
Singh, Rohan [1 ,2 ,3 ,4 ]
Richter, Marten [5 ]
Moody, Galan [1 ,2 ,3 ]
Siemens, Mark E. [6 ]
Li, Hebin [7 ]
Cundiff, Steven T. [1 ,2 ,3 ,4 ,8 ]
机构
[1] Univ Colorado, JILA, Boulder, CO 80309 USA
[2] NIST, Boulder, CO 80309 USA
[3] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
[4] Univ Michigan, Dept Phys, Ann Arbor, MI 48105 USA
[5] Tech Univ Berlin, Inst Theoret Phys Nichtlineare Opt & Quantenelekt, D-10623 Berlin, Germany
[6] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA
[7] Florida Int Univ, Dept Phys, Miami, FL 33199 USA
[8] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA
基金
美国国家科学基金会;
关键词
NEAR-FIELD SPECTROSCOPY; SOLVATION DYNAMICS; SPECTRAL DIFFUSION; RELAXATION; TRANSPORT; MECHANISMS; FILMS;
D O I
10.1103/PhysRevB.95.235307
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Exciton transport in nanomaterials is sensitive to fluctuations in the confinement potential that are intrinsic to heterogeneous solid-state systems. Redistribution of exciton population manifests as spectral diffusion in which the exciton energy shifts. It is generally assumed that increase or decrease in the exciton energy are equally probable. We show that this assumption is not necessarily valid using two-dimensional coherent spectroscopy on a disordered GaAs quantum well. High-energy excitons relax into lower-energy localized states over a time scale of tens of picoseconds at low sample temperatures (similar to 5K). A transition to uniform spectral diffusion of excitons is observed as the temperature is increased to similar to 20 K. Numerical simulations reveal the contribution of exciton-phonon interactions to spectral diffusion of excitons. These results provide a perspective on the process of dynamic localization and the effect of the correlation length of disorder on spectral diffusion of excitons.
引用
收藏
页数:14
相关论文
共 59 条
[1]   Coherent Multidimensional Optical Spectroscopy of Excitons in Molecular Aggregates; Quasiparticle versus Supermolecule Perspectives [J].
Abramavicius, Darius ;
Palmieri, Benoit ;
Voronine, Dmitri V. ;
Sanda, Frantisek ;
Mukamel, Shaul .
CHEMICAL REVIEWS, 2009, 109 (06) :2350-2408
[2]   TIME-RESOLVED STUDY OF DEPHASING MECHANISMS OF EXCITONS IN GAAS/ALXGA1-XAS QUANTUM-WELL STRUCTURES [J].
BAKKER, HJ ;
LEO, K ;
SHAH, J ;
KOHLER, K .
PHYSICAL REVIEW B, 1994, 49 (12) :8249-8257
[3]  
Balay S, 1997, MODERN SOFTWARE TOOLS FOR SCIENTIFIC COMPUTING, P163
[4]  
Balay S., 2015, Technical Report ANL-95/11-Revision 3.6
[5]   EXCITON RELAXATION AND RADIATIVE RECOMBINATION IN SEMICONDUCTOR QUANTUM DOTS [J].
BOCKELMANN, U .
PHYSICAL REVIEW B, 1993, 48 (23) :17637-17640
[6]   A versatile ultrastable platform for optical multidimensional Fourier-transform spectroscopy [J].
Bristow, A. D. ;
Karaiskaj, D. ;
Dai, X. ;
Zhang, T. ;
Carlsson, C. ;
Hagen, K. R. ;
Jimenez, R. ;
Cundiff, S. T. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2009, 80 (07)
[7]   Polarization dependence of semiconductor exciton and biexciton contributions to phase-resolved optical two-dimensional Fourier-transform spectra [J].
Bristow, Alan D. ;
Karaiskaj, Denis ;
Dai, Xingcan ;
Mirin, Richard P. ;
Cundiff, Steven T. .
PHYSICAL REVIEW B, 2009, 79 (16)
[8]   Echo peak-shift spectroscopy of non-Markovian exciton dynamics in quantum wells [J].
Carter, S. G. ;
Chen, Z. ;
Cundiff, S. T. .
PHYSICAL REVIEW B, 2007, 76 (12)
[9]   Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers [J].
Caruge, J. M. ;
Halpert, J. E. ;
Wood, V. ;
Bulovic, V. ;
Bawendi, M. G. .
NATURE PHOTONICS, 2008, 2 (04) :247-250
[10]   Highly efficient energy excitation transfer in light-harvesting complexes: The fundamental role of noise-assisted transport [J].
Caruso, F. ;
Chin, A. W. ;
Datta, A. ;
Huelga, S. F. ;
Plenio, M. B. .
JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (10)