Horizontally homothetic submersions and nonnegative curvature

被引:6
作者
Ou, Ye-Lin [1 ]
Wilhelm, Frederick [1 ]
机构
[1] Univ Calif Riverside, Dept Math, Riverside, CA 92521 USA
基金
美国国家科学基金会;
关键词
horizontally homothetic submersion; Riemannian submersion; nonnegative curvature;
D O I
10.1512/iumj.2007.56.2999
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that any horizontally homothetic submersion from a compact manifold of nonnegative sectional curvature is a Riemannian submersion.
引用
收藏
页码:243 / 261
页数:19
相关论文
共 44 条
[1]  
[Anonymous], 2003, London Mathematical Society Monographs. New Series
[2]   A tour of the theory of absolutely minimizing functions [J].
Aronsson, G ;
Crandall, MG ;
Juutinen, P .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 41 (04) :439-505
[3]   ON PARTIAL DIFFERENTIAL EQUATION U2/XUXX + 2UXUYUXY + U2/YUYY = 0 [J].
ARONSSON, G .
ARKIV FOR MATEMATIK, 1968, 7 (05) :395-&
[4]   P-HARMONIC MAPS AND MINIMAL SUBMANIFOLDS [J].
BAIRD, P ;
GUDMUNDSSON, S .
MATHEMATISCHE ANNALEN, 1992, 294 (04) :611-624
[5]   Existence and comparison results for fully nonlinear degenerate elliptic equations without zeroth-order term [J].
Barles, G ;
Busca, J .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2001, 26 (11-12) :2323-2337
[6]  
Barron EN, 2001, ARCH RATION MECH AN, V157, P255, DOI 10.1007/s002050100133
[7]  
Barron EN, 1999, NATO ADV SCI I C-MAT, V528, P1
[8]   Lower semicontinuity of L∞ functionals [J].
Barron, EN ;
Jensen, RR ;
Wang, CY .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2001, 18 (04) :495-517
[9]  
BARRON EN, INFINITY LAPLACIAN A
[10]  
BHATTACHARYA T, 2005, REV MAT COMPLUT, V18, P377