Glycans of SARS-CoV-2 Spike Protein in Virus Infection and Antibody Production

被引:64
作者
Zhao, Xiaohui [1 ]
Chen, Huan [1 ]
Wang, Hongliang [1 ]
机构
[1] Xi An Jiao Tong Univ, Hlth Sci Ctr, Dept Pathogen Biol & Immunol, Xian, Peoples R China
基金
中国国家自然科学基金;
关键词
SARS-CoV-2 (2019-nCoV); vaccine; glycosylation; structure; viral entry; CRYSTAL-STRUCTURE; BINDING; GLYCOPROTEIN; RECOGNITION; ENTRY; IMMUNOGENICITY; VACCINES; TARGETS; EPITOPE; SHIELD;
D O I
10.3389/fmolb.2021.629873
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Viral protein glycosylation represents a successful strategy employed by the parasite to take advantage of host-cell machinery for modification of its own proteins. The resulting glycans have unneglectable roles in viral infection and immune response. The spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which presents on the surface of matured virion and mediates viral entry into the host, also undergoes extensive glycosylation to shield it from the human defense system. It is believed that the ongoing COVID-19 pandemic with more than 90,000,000 infections and 1,900,000 deaths is partly due to its successful glycosylation strategy. On the other hand, while glycan patches on S protein have been reported to shield the host immune response by masking "nonself" viral peptides with "self-glycans," the epitopes are also important in eliciting neutralizing antibodies. In this review, we will summarize the roles of S protein glycans in mediating virus-receptor interactions, and in antibody production, as well as indications for vaccine development.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] The landscape of antibody binding in SARS-CoV-2 infection
    Heffron, Anna S.
    McIlwain, Sean J.
    Amjadi, Maya F.
    Baker, David A.
    Khullar, Saniya
    Armbrust, Tammy
    Halfmann, Peter J.
    Kawaoka, Yoshihiro
    Sethi, Ajay K.
    Palmenberg, Ann C.
    Shelef, Miriam A.
    O'Connor, David H.
    Ong, Irene M.
    [J]. PLOS BIOLOGY, 2021, 19 (06)
  • [22] Antibody-mediated disruption of the SARS-CoV-2 spike glycoprotein
    Wrobel, Antoni G.
    Benton, Donald J.
    Hussain, Saira
    Harvey, Ruth
    Martin, Stephen R.
    Roustan, Chloe
    Rosenthal, Peter B.
    Skehel, John J.
    Gamblin, Steven J.
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [23] A thermostable, closed SARS-CoV-2 spike protein trimer
    Xiong, Xiaoli
    Qu, Kun
    Ciazynska, Katarzyna A.
    Hosmillo, Myra
    Carter, Andrew P.
    Ebrahimi, Soraya
    Ke, Zunlong
    Scheres, Sjors H. W.
    Bergamaschi, Laura
    Grice, Guinevere L.
    Zhang, Ying
    Nathan, James A.
    Baker, Stephen
    James, Leo C.
    Baxendale, Helen E.
    Goodfellow, Ian
    Doffinger, Rainer
    Briggs, John A. G.
    Bradley, John
    Lyons, Paul A.
    Smith, Kenneth G. C.
    Toshner, Mark
    Elmer, Anne
    Ribeiro, Carla
    Kourampa, Jenny
    Jose, Sherly
    Kennet, Jane
    Rowlands, Jane
    Meadows, Anne
    O'Brien, Criona
    Rastall, Rebecca
    Crucusio, Cherry
    Hewitt, Sarah
    Price, Jane
    Calder, Jo
    Canna, Laura
    Bucke, Ashlea
    Tordesillas, Hugo
    Harris, Julie
    Ruffolo, Valentina
    Domingo, Jason
    Graves, Barbara
    Butcher, Helen
    Caputo, Daniela
    Le Gresley, Emma
    Dunmore, Benjamin J.
    Martin, Jennifer
    Legchenko, Ekaterina
    Treacy, Carmen
    Huang, Christopher
    [J]. NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2020, 27 (10) : 934 - +
  • [24] Integrative structural studies of the SARS-CoV-2 spike protein during the fusion process (2022)
    Miner, Jacob C.
    Fenimore, Paul W.
    Fischer, William M.
    McMahon, Benjamin H.
    Sanbonmatsu, Karissa Y.
    Tung, Chang-Shung
    [J]. CURRENT RESEARCH IN STRUCTURAL BIOLOGY, 2022, 4 : 220 - 230
  • [25] MoMo30 Binds to SARS-CoV-2 Spike Variants and Blocks Infection by SARS-CoV-2 Pseudovirus
    DeBarros, Kenya
    Khan, Mahfuz
    Coleman, Morgan
    Bond, Vincent C.
    Floyd, Virginia
    Gbodossou, Erick
    Diop, Amad
    Krumpe, Lauren R. H.
    O'Keefe, Barry R.
    Powell, Michael D.
    [J]. VIRUSES-BASEL, 2024, 16 (09):
  • [26] Modelling of SARS-CoV-2 spike protein structures at varying pH values
    Niu, Ziyuan
    Kementzidis, Georgios
    Zhang, Peng
    Zhang, Ziji
    Essuman, Bernard
    Hasegawa, Karin
    Rafailovich, Miriam
    Simon, Marcia
    Aktas, Bertal Huseyin
    Papadopoulos, Evangelos
    Deng, Yuefan
    [J]. MOLECULAR SIMULATION, 2024, 50 (17-18) : 1540 - 1552
  • [27] Intranasal Administration of Recombinant Newcastle Disease Virus Expressing SARS-CoV-2 Spike Protein Protects hACE2 TG Mice against Lethal SARS-CoV-2 Infection
    Kim, Deok-Hwan
    Lee, Jiho
    Lee, Da-Ye
    Lee, Seung-Hun
    Jeong, Jei-Hyun
    Kim, Ji-Yun
    Kim, Jiwon
    Choi, Yang-Kyu
    Lee, Joong-Bok
    Park, Seung-Young
    Choi, In-Soo
    Lee, Sang-Won
    Youk, Sungsu
    Song, Chang-Seon
    [J]. VACCINES, 2024, 12 (08)
  • [28] Structural features of coronavirus SARS-CoV-2 spike protein: Targets for vaccination
    Sternberg, Ariane
    Naujokat, Cord
    [J]. LIFE SCIENCES, 2020, 257
  • [29] Vaccine design based on 16 epitopes of SARS-CoV-2 spike protein
    He, Jinlei
    Huang, Fan
    Zhang, Jianhui
    Chen, Qiwei
    Zheng, Zhiwan
    Zhou, Qi
    Chen, Dali
    Li, Jiao
    Chen, Jianping
    [J]. JOURNAL OF MEDICAL VIROLOGY, 2021, 93 (04) : 2115 - 2131
  • [30] SARS-CoV-2 spike protein antibody titers 6 months after SARS-CoV-2 mRNA vaccination among patients undergoing hemodialysis in Japan
    Kanai, Daisuke
    Wakui, Hiromichi
    Haze, Tatsuya
    Azushima, Kengo
    Kinguchi, Sho
    Tsukamoto, Shunichiro
    Kanaoka, Tomohiko
    Urate, Shingo
    Toya, Yoshiyuki
    Hirawa, Nobuhito
    Kato, Hideaki
    Watanabe, Fumimasa
    Hanaoka, Kanako
    Hanaoka, Masaaki
    Mitsuhashi, Hiroshi
    Yamaguchi, Satoshi
    Ohnishi, Toshimasa
    Tamura, Kouichi
    [J]. CLINICAL AND EXPERIMENTAL NEPHROLOGY, 2022, 26 (10) : 988 - 996