A generalization of the Montgomery Hooley theorem

被引:1
作者
Yao, Weili [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
关键词
Circle method; Exponential sums; Selberg-Delange method; DAVENPORT-HALBERSTAM THEOREM; ARITHMETIC PROGRESSIONS; PRIMES; VARIANCE; NUMBER;
D O I
10.1016/j.jnt.2015.10.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Omega(n) be the total number of prime factors of n and Theta(k)(x;q,a) = Sigma(n <= x) (Omega(n)=k) 1, where k is allowed to tend to infinity with respect to x. Combining the circle method with the Selberg Delange method, together with the result of Bombieri-type sum for exponential sums, we investigate the behavior of the error term of 0, (x; q, a) in the "mean" and obtain its upper bound. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:496 / 517
页数:22
相关论文
共 21 条
[1]  
Barban M.B., 1966, USPEHI MAT NAUK, V21, P51
[2]  
DAVENPORT H, 1966, MICH MATH J, V13, P485
[3]  
DAVENPORT H., 2005, Analytic methods for Diophantine equations and Diophantine inequalities
[4]  
Friedlander JB, 1996, Q J MATH, V47, P313
[5]  
Goldston D. A., 1997, Sieve Methods, Exponential Sums, and their Applications in Number Theory, P117
[6]  
HOOLEY C, 1975, J LOND MATH SOC, V9, P625
[7]  
HOOLEY C, 1975, J REINE ANGEW MATH, V274, P206
[8]   The mean square of the divisor function [J].
Jia, Chaohua ;
Sankaranarayanan, Ayyadurai .
ACTA ARITHMETICA, 2014, 164 (02) :181-208
[9]   ON THE MONTGOMERY-HOOLEY THEOREM IN SHORT INTERVALS [J].
Languasco, A. ;
Perelli, A. ;
Zaccagnini, A. .
MATHEMATIKA, 2010, 56 (02) :231-243
[10]   On a variance of Hecke eigenvalues in arithmetic progressions [J].
Lau, Yuk-Kam ;
Zhao, Lilu .
JOURNAL OF NUMBER THEORY, 2012, 132 (05) :869-887