Infinitely Many Solutions for Systems of Sturm-Liouville Boundary Value Problems

被引:20
作者
Graef, John R. [1 ]
Heidarkhani, Shapour [2 ]
Kong, Lingju [1 ]
机构
[1] Univ Tennessee, Dept Math, Chattanooga, TN 37403 USA
[2] Razi Univ, Fac Sci, Dept Math, Kermanshah 67149, Iran
关键词
Infinitely many solutions; Sturm-Liouville boundary conditions; multiplicity results; critical point theory; DIMENSIONAL P-LAPLACIAN; POSITIVE SOLUTIONS; MULTIPLE SOLUTIONS;
D O I
10.1007/s00025-014-0379-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the authors obtain the existence of infinitely many classical solutions to the boundary value system with Sturm-Liouville boundary conditions { -(phi(pi)(u(i)'))' = lambda F-ui(x, u(1), ... , u(n))h(i)(u(i)') in (a, b), a(i)'u(i)(a) - beta(i)u(i)'(a) = 0, gamma(i)u(i)(b) + sigma(i)u(i)'(b) = 0, i = 1, ... , n. Critical point theory and Ricceri's variational principle are used in the proofs.
引用
收藏
页码:327 / 341
页数:15
相关论文
共 19 条
[1]  
[Anonymous], 2008, NONLINEAR STUD
[2]   Three solutions for a quasilinear two-point boundary-value problem involving the one-dimensional p-laplacian [J].
Averna, D ;
Bonanno, G .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2004, 47 :257-270
[3]  
Benmezai A, 2011, DIFFER EQUAT APPL, V3, P347
[4]   NONTRIVIAL SOLUTIONS FOR STURM-LIOUVILLE SYSTEMS VIA A LOCAL MINIMUM THEOREM FOR FUNCTIONALS [J].
Bonanno, Gabriele ;
Heidarkhani, Shapour ;
O'Regan, Donal .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2014, 89 (01) :8-18
[5]   Infinitely Many Solutions for a Boundary Value Problem with Discontinuous Nonlinearities [J].
Bonanno, Gabriele ;
Bisci, Giovanni Molica .
BOUNDARY VALUE PROBLEMS, 2009,
[6]   A Neumann boundary value problem for the Sturm-Liouville equation [J].
Bonanno, Gabriele ;
D'Agui, Giuseppina .
APPLIED MATHEMATICS AND COMPUTATION, 2009, 208 (02) :318-327
[7]  
Candito P, 2010, STUD U BABES-BOL MAT, V55, P41
[8]   Infinitely many solutions to elliptic problems with variable exponent and nonhomogeneous Neumann conditions [J].
D'Agui, Giuseppina ;
Sciammetta, Angela .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (14) :5612-5619
[9]   Multiplicity of positive solutions for higher order Sturm-Liouville problems [J].
Davis, JM ;
Erbe, LH ;
Henderson, J .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2001, 31 (01) :169-184
[10]   A critical points approach for the existence of multiple solutions of a Dirichlet quasilinear system [J].
Graef, John R. ;
Heidarkhani, Shapour ;
Kong, Lingju .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 388 (02) :1268-1278