Uniformly Convergent Cubic Nonconforming Element For Darcy-Stokes Problem

被引:6
作者
Chen, Shao-chun [1 ]
Dong, Li-na [2 ]
Zhao, Ji-kun [1 ]
机构
[1] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R China
[2] Inst Henan Educ, Sch Math & Stat, Zhengzhou 450046, Peoples R China
关键词
Darcy-Stokes problem; Nonconforming; Cubic element; Uniformly convergent; MIXED FINITE-ELEMENTS; FAMILY; OPERATOR; FLOW;
D O I
10.1007/s10915-016-0353-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we construct a cubic element named DSC33 for the Darcy-Stokes problem of three-dimensional space. The finite element space for velocity is -conforming, i.e., the normal component of a function in is continuous across the element boundaries, meanwhile the tangential component of a function in is averagely continuous across the element boundaries, hence is -average conforming. We prove that this element is uniformly convergent with respect to the perturbation constant for the Darcy-Stokes problem. In addition, we construct a discrete de Rham complex corresponding to DSC33 element. The finite element spaces in the discrete de Rham complex can be applied to some singular perturbation problems.
引用
收藏
页码:231 / 251
页数:21
相关论文
共 50 条
  • [41] A SECOND ORDER IN TIME INCREMENTAL PRESSURE CORRECTION FINITE ELEMENT METHOD FOR THE NAVIER-STOKES/DARCY PROBLEM
    Wang, Yunxia
    Li, Shishun
    Si, Zhiyong
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2018, 52 (04): : 1477 - 1500
  • [42] A fully-mixed finite element method for the Navier-Stokes/Darcy coupled problem with nonlinear viscosity
    Caucao, Sergio
    Gatica, Gabriel N.
    Oyarzua, Ricardo
    Sebestova, Ivana
    JOURNAL OF NUMERICAL MATHEMATICS, 2017, 25 (02) : 55 - 88
  • [43] A Nonconforming Virtual Element Method for the Elliptic Interface Problem
    Wang, Haimei
    Zheng, Xianyan
    Chen, Jinru
    Wang, Feng
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2024, 14 (02) : 397 - 417
  • [44] Mortar Element Method for the Coupling of Navier-Stokes and Darcy Flows
    Zhao, Xin
    Chen, Yanping
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2018, 10 (03) : 710 - 734
  • [45] A strongly conservative finite element method for the coupling of Stokes and Darcy flow
    Kanschat, G.
    Riviere, B.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (17) : 5933 - 5943
  • [46] Some DG schemes for the Stokes-Darcy problem using P1/P1 element
    Zhou, Guanyu
    Kashiwabara, Takahito
    Oikawa, Issei
    Chung, Eric
    Shiue, Ming-Cheng
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2019, 36 (03) : 1101 - 1128
  • [47] Superconvergence of a Nonconforming Brick Element for the Quad-Curl Problem
    Zhou, Xinchen
    Meng, Zhaoliang
    Niu, Hexin
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2024, 21 (06)
  • [48] Nonconforming Finite Element Method Applied to the Driven Cavity Problem
    Lim, Roktaek
    Sheen, Dongwoo
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2017, 21 (04) : 1012 - 1038
  • [49] A Viscosity-Splitting Method for the Navier-Stokes/ Darcy Problem
    Wang, Yunxia
    Han, Xuefeng
    Si, Zhiyong
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2020, 12 (01) : 251 - 277
  • [50] A nonconforming pressure-robust finite element method for the Stokes equations on anisotropic meshes
    Apel, Thomas
    Kempf, Volker
    Linke, Alexander
    Merdon, Christian
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2022, 42 (01) : 392 - 416