Uniformly Convergent Cubic Nonconforming Element For Darcy-Stokes Problem

被引:6
作者
Chen, Shao-chun [1 ]
Dong, Li-na [2 ]
Zhao, Ji-kun [1 ]
机构
[1] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R China
[2] Inst Henan Educ, Sch Math & Stat, Zhengzhou 450046, Peoples R China
关键词
Darcy-Stokes problem; Nonconforming; Cubic element; Uniformly convergent; MIXED FINITE-ELEMENTS; FAMILY; OPERATOR; FLOW;
D O I
10.1007/s10915-016-0353-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we construct a cubic element named DSC33 for the Darcy-Stokes problem of three-dimensional space. The finite element space for velocity is -conforming, i.e., the normal component of a function in is continuous across the element boundaries, meanwhile the tangential component of a function in is averagely continuous across the element boundaries, hence is -average conforming. We prove that this element is uniformly convergent with respect to the perturbation constant for the Darcy-Stokes problem. In addition, we construct a discrete de Rham complex corresponding to DSC33 element. The finite element spaces in the discrete de Rham complex can be applied to some singular perturbation problems.
引用
收藏
页码:231 / 251
页数:21
相关论文
共 50 条
  • [31] A NONCONFORMING PRIMAL MIXED FINITE ELEMENT METHOD FOR THE STOKES EQUATIONS
    Cho, Sungmin
    Park, Bun-Jar
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 51 (06) : 1655 - 1668
  • [32] Decoupled modified characteristics finite element method for the time dependent Navier-Stokes/Darcy problem
    Si, Zhiyong
    Wang, Yunxia
    Li, Shishun
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2014, 37 (09) : 1392 - 1404
  • [33] A Discontinuous Galerkin Method for the Coupled Stokes and Darcy Problem
    Wen, Jing
    Su, Jian
    He, Yinnian
    Chen, Hongbin
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 85 (02)
  • [34] A global uniformly convergent finite element method for a quasi-linear singularly perturbed elliptic problem
    Li, JC
    Navon, IM
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1999, 38 (5-6) : 197 - 206
  • [35] A Posterior Error Analysis for the Nonconforming Discretization of Stokes Eigenvalue Problem
    Shang Hui JIA
    Fu Sheng LUO
    He Hu XIE
    ActaMathematicaSinica(EnglishSeries), 2014, 30 (06) : 949 - 967
  • [36] PERTURBATION SOLUTION OF THE COUPLED STOKES-DARCY PROBLEM
    Khabthani, Sondes
    Elasmi, Lassaad
    Feuillebois, Francois
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2011, 15 (04): : 971 - 990
  • [37] A posterior error analysis for the nonconforming discretization of Stokes eigenvalue problem
    Jia, Shang Hui
    Luo, Fu Sheng
    Xie, He Hu
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2014, 30 (06) : 949 - 967
  • [38] A posterior error analysis for the nonconforming discretization of Stokes eigenvalue problem
    Shang Hui Jia
    Fu Sheng Luo
    He Hu Xie
    Acta Mathematica Sinica, English Series, 2014, 30 : 949 - 967
  • [39] A nonconforming finite element method for the stationary Navier-Stokes equations
    Karakashian, OA
    Jureidini, WN
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (01) : 93 - 120
  • [40] A unified local projection-based stabilized virtual element method for the coupled Stokes-Darcy problem
    Mishra, Sudheer
    Natarajan, E.
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2024, 50 (06)