Herschel map of Saturn's stratospheric water, delivered by the plumes of Enceladus

被引:20
作者
Cavalie, T. [1 ,2 ]
Hue, V [3 ]
Hartogh, P. [4 ]
Moreno, R. [2 ]
Lellouch, E. [2 ]
Feuchtgruber, H. [5 ]
Jarchow, C. [4 ]
Cassidy, T. [6 ]
Fletcher, L. N. [7 ]
Billebaud, F. [1 ]
Dobrijevic, M. [1 ]
Rezac, L. [4 ]
Orton, G. S. [8 ]
Rengel, M. [4 ]
Fouchet, T. [2 ]
Guerlet, S. [9 ]
机构
[1] Univ Bordeaux, CNRS, Lab Astrophys Bordeaux, B18N Allee Geoffroy St Hilaire, F-33615 Pessac, France
[2] Univ Paris Diderot, Sorbonne Univ, LESIA,UPMC Univ Paris 06, Sorbonne Paris Cite,PSL Res Univ,CNRS,Observ Pari, F-92195 Meudon, France
[3] Southwest Res Inst, San Antonio, TX 78228 USA
[4] Max Planck Inst Sonnen Syst Forsch, D-37077 Gottingen, Germany
[5] Max Planck Inst Extraterr Phys, Garching, Germany
[6] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80303 USA
[7] Univ Leicester, Dept Phys & Astron, Univ Rd, Leicester LE1 7RH, Leics, England
[8] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA
[9] Sorbonne Univ, UPMC Paris 06, UMR 8539, LMD, F-75005 Paris, France
关键词
planets and satellites: individual: Saturn; planets and satellites: individual: Enceladus; planets and satellites: atmospheres; ROTOTRANSLATIONAL ABSORPTION-SPECTRA; CARBON-MONOXIDE; GIANT PLANETS; MERIDIONAL DISTRIBUTION; MILLIMETER WAVELENGTHS; EQUATORIAL OSCILLATION; SCIENTIFIC RATIONALE; TITANS ATMOSPHERE; CIRS/CASSINI LIMB; JUPITER;
D O I
10.1051/0004-6361/201935954
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. The origin of water in the stratospheres of giant planets has been an outstanding question ever since its first detection by the Infrared Space Observatory some 20 years ago. Water can originate from interplanetary dust particles, icy rings and satellites, and large comet impacts. Analyses of Herschel Space Observatory observations have proven that the bulk of Jupiter's stratospheric water was delivered by the Shoemaker-Levy 9 impacts in 1994. In 2006, the Cassini mission detected water plumes at the South Pole of Enceladus, which made the moon a serious candidate for Saturn's stratospheric water. Further evidence was found in 2011 when Herschel demonstrated the presence of a water torus at the orbital distance of Enceladus that was fed by the moon's plumes. Finally, water falling from the rings onto Saturn's uppermost atmospheric layers at low latitudes was detected during the final orbits of Cassini's end-of-mission plunge into the atmosphere. Aims. In this paper, we use Herschel mapping observations of water in Saturn's stratosphere to identify its source. Methods. We tested several empirical models against the Herschel-HIFI and -PACS observations, which were collected on December 30, 2010, and January 2, 2011, respectively. Results. We demonstrate that Saturn's stratospheric water is not uniformly mixed as a function of latitude, but peaks at the equator and decreases poleward with a Gaussian distribution. We obtain our best fit with an equatorial mole fraction 1.1 ppb and a half width at half maximum of 25 degrees, when accounting for a temperature increase in the two warm stratospheric vortices produced by Saturn's Great Storm of 2010-2011. Conclusions. This work demonstrates that Enceladus is the main source of Saturn's stratospheric water.
引用
收藏
页数:15
相关论文
共 118 条
[1]   Two numerical models designed to reproduce Saturn ring temperatures as measured by Cassini-CIRS [J].
Altobelli, Nicolas ;
Lopez-Paz, David ;
Pilorz, S. ;
Spilker, Linda J. ;
Morishima, R. ;
Brooks, S. ;
Leyrat, C. ;
Deau, E. ;
Edgington, S. ;
Flandes, A. .
ICARUS, 2014, 238 :205-220
[2]   Submillimeter Wave Astronomy Satellite observations of Jupiter and Saturn:: Detection of 557 GHz water emission from the upper atmosphere [J].
Bergin, EA ;
Lellouch, E ;
Harwit, M ;
Gurwell, MA ;
Melnick, GJ ;
Ashby, MLN ;
Chin, G ;
Erickson, NR ;
Goldsmith, PF ;
Howe, JE ;
Kleiner, SC ;
Koch, DG ;
Neufeld, DA ;
Patten, BM ;
Plume, R ;
Schieder, R ;
Snell, RL ;
Stauffer, JR ;
Tolls, V ;
Wang, Z ;
Winnewisser, G ;
Zhang, YF .
ASTROPHYSICAL JOURNAL, 2000, 539 (02) :L147-L150
[3]   Carbon monoxide on Jupiter:: Evidence for both internal and external sources [J].
Bézard, B ;
Lellouch, E ;
Strobel, D ;
Maillard, JP ;
Drossart, P .
ICARUS, 2002, 159 (01) :95-111
[4]   THEORETICAL COLLISION-INDUCED ROTOTRANSLATIONAL ABSORPTION-SPECTRA FOR THE OUTER PLANETS - H2-CH4 PAIRS [J].
BORYSOW, A ;
FROMMHOLD, L .
ASTROPHYSICAL JOURNAL, 1986, 304 (02) :849-865
[5]   COLLISION-INDUCED ROTOTRANSLATIONAL ABSORPTION-SPECTRA OF H-2-HE PAIRS AT TEMPERATURES FROM 40 TO 3000 K [J].
BORYSOW, J ;
FROMMHOLD, L ;
BIRNBAUM, G .
ASTROPHYSICAL JOURNAL, 1988, 326 (01) :509-515
[6]   MODELING OF PRESSURE-INDUCED FAR-INFRARED ABSORPTION-SPECTRA - MOLECULAR-HYDROGEN PAIRS [J].
BORYSOW, J ;
TRAFTON, L ;
FROMMHOLD, L ;
BIRNBAUM, G .
ASTROPHYSICAL JOURNAL, 1985, 296 (02) :644-654
[7]   H-2-broadened (H2O)-O-16 in four infrared bands between 55 and 4045 cm(-1) [J].
Brown, LR ;
Plymate, C .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 1996, 56 (02) :263-282
[8]   Detection of new hydrocarbons in Uranus' atmosphere by infrared spectroscopy [J].
Burgdorf, Martin ;
Orton, Glenn ;
van Cleve, Jeffrey ;
Meadows, Victoria ;
Houck, James .
ICARUS, 2006, 184 (02) :634-637
[9]   Collisional spreading of Enceladus' neutral cloud [J].
Cassidy, T. A. ;
Johnson, R. E. .
ICARUS, 2010, 209 (02) :696-703
[10]   Observations of CO on Saturn and Uranus at millimeter wavelengths:: new upper limit determinations [J].
Cavalie, T. ;
Billebaud, F. ;
Fouchet, T. ;
Lellouch, E. ;
Brillet, J. ;
Dobrijevic, M. .
ASTRONOMY & ASTROPHYSICS, 2008, 484 (02) :555-561