Training and validation of a deep learning architecture for the automatic analysis of coronary angiography

被引:45
作者
Du, Tianming [1 ]
Xie, Lihua [2 ]
Zhang, Honggang [1 ]
Liu, Xuqing [1 ]
Wang, Xiaofei [3 ]
Chen, Donghao [3 ]
Xu, Yang [3 ]
Sun, Zhongwei [2 ]
Zhou, Wenhui [3 ]
Song, Lei [2 ]
Guan, Changdong [2 ]
Lansky, Alexandra J. [4 ]
Xu, Bo [2 ]
机构
[1] Beijing Univ Posts & Telecommun, Beijing, Peoples R China
[2] Chinese Acad Med Sci, Fu Wai Hosp, Natl Ctr Cardiovasc Dis, 167 Beilishi Rd, Beijing 100037, Peoples R China
[3] Beijing Redcdn Technol Co Ltd, Beijing, Peoples R China
[4] Yale Univ, Sch Med, New Haven, CT USA
关键词
artificial intelligence; coronary artery disease; imaging modalities; multiple vessel disease; ARTIFICIAL-INTELLIGENCE; CLASSIFICATION; SEGMENTATION; CANCER;
D O I
10.4244/EIJ-D-20-00570
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: In recent years, the use of deep learning has become more commonplace in the biomedical field and its development will greatly assist clinical and imaging data interpretation. Most existing machine learning methods for coronary angiography analysis are limited to a single aspect. Aims: We aimed to achieve an automatic and multimodal analysis to recognise and quantify coronary angiography, integrating multiple aspects, including the identification of coronary artery segments and the recognition of lesion morphology. Methods: A data set of 20,612 angiograms was retrospectively collected, among which 13,373 angiograms were labelled with coronary artery segments, and 7,239 were labelled with special lesion morphology. Trained and optimised by these labelled data, one network recognised 20 different segments of coronary arteries, while the other detected lesion morphology, including measures of lesion diameter stenosis as well as calcification, thrombosis, total occlusion, and dissection detections in an input angiogram. Results: For segment prediction, the recognition accuracy was 98.4%, and the recognition sensitivity was 85.2%. For detecting lesion morphologies including stenotic lesion, total occlusion, calcification, thrombosis, and dissection, the F1 scores were 0.829, 0.810, 0.802, 0.823, and 0.854, respectively. Only two seconds were needed for the automatic recognition. Conclusions: Our deep learning architecture automatically provides a coronary diagnostic map by integrating multiple aspects. This helps cardiologists to flag and diagnose lesion severity and morphology during the intervention.
引用
收藏
页码:32 / +
页数:25
相关论文
共 24 条
[1]   Translating Artificial Intelligence Into Clinical Care [J].
Beam, Andrew L. ;
Kohane, Isaac S. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2016, 316 (22) :2368-2369
[2]   ACCURACY OF INDIVIDUAL AND PANEL VISUAL INTERPRETATIONS OF CORONARY ARTERIOGRAMS - IMPLICATIONS FOR CLINICAL DECISIONS [J].
BEAUMAN, GJ ;
VOGEL, RA .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 1990, 16 (01) :108-113
[3]   Medical documentation: Part of the solution, or part of the problem? A narrative review of the literature on the time spent on and value of medical documentation [J].
Clynch, Neil ;
Kellett, John .
INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2015, 84 (04) :221-228
[4]   Imaging of coronary atherosclerosis - evolution towards new treatment strategies [J].
Dweck, Marc R. ;
Doris, Mhairi K. ;
Motwani, Manish ;
Adamson, Philip D. ;
Slomka, Piotr ;
Dey, Damini ;
Fayad, Zahi A. ;
Newby, David E. ;
Berman, Daniel .
NATURE REVIEWS CARDIOLOGY, 2016, 13 (09) :533-548
[5]   Dermatologist-level classification of skin cancer with deep neural networks [J].
Esteva, Andre ;
Kuprel, Brett ;
Novoa, Roberto A. ;
Ko, Justin ;
Swetter, Susan M. ;
Blau, Helen M. ;
Thrun, Sebastian .
NATURE, 2017, 542 (7639) :115-+
[6]   Measuring performance on the Healthcare Access and Quality Index for 195 countries and territories and selected subnational locations: a systematic analysis from the Global Burden of Disease Study 2016 [J].
Fullman, Nancy ;
Yearwood, Jamal ;
Abay, Solomon M. ;
Abbafati, Cristiana ;
Abd-Allah, Foad ;
Abdela, Jemal ;
Abdelalim, Ahmed ;
Abebe, Zegeye ;
Abebo, Teshome Abuka ;
Aboyans, Victor ;
Abraha, Haftom Niguse ;
Abreu, Daisy M. X. ;
Abu-Raddad, Laith J. ;
Adane, Akilew Awoke ;
Adedoyin, Rufus Adesoji ;
Adetokunboh, Olatunji ;
Adhikari, Tara Ballav ;
Afarideh, Mohsen ;
Afshin, Ashkan ;
Agarwal, Gina ;
Agius, Dominic ;
Agrawal, Anurag ;
Agrawal, Sutapa ;
Kiadaliri, Aliasghar Ahmad ;
Aichour, Miloud Taki Eddine ;
Akibu, Mohammed ;
Akinyemi, Rufus Olusola ;
Akinyemiju, Tomi F. ;
Akseer, Nadia ;
Al Lami, Faris Hasan ;
Alahdab, Fares ;
Al-Aly, Ziyad ;
Alam, Khurshid ;
Alam, Tahiya ;
Alasfoor, Deena ;
Albittar, Mohammed I. ;
Alene, Kefyalew Addis ;
Al-Eyadhy, Ayman ;
Ali, Syed Danish ;
Alijanzadeh, Mehran ;
Aljunid, Syed M. ;
Alkerwi, Ala'a ;
Alla, Francois ;
Allebeck, Peter ;
Allen, Christine ;
Alomari, Mahmoud A. ;
Al-Raddadi, Rajaa ;
Alsharif, Ubai ;
Altirkawi, Khalid A. ;
Alvis-Guzman, Nelson .
LANCET, 2018, 391 (10136) :2236-2271
[7]   SYNTAX Score Reproducibility and Variability Between Interventional Cardiologists, Core Laboratory Technicians, and Quantitative Coronary Measurements [J].
Genereux, Philippe ;
Palmerini, Tullio ;
Caixeta, Adriano ;
Cristea, Ecaterina ;
Mehran, Roxana ;
Sanchez, Raquel ;
Lazar, Dana ;
Jankovic, Ivana ;
Corral, Maria D. ;
Dressler, Ovidiu ;
Fahy, Martin P. ;
Parise, Helen ;
Lansky, Alexandra J. ;
Stone, Gregg W. .
CIRCULATION-CARDIOVASCULAR INTERVENTIONS, 2011, 4 (06) :553-561
[8]   Deep Learning Algorithms for Detection of Lymph Node Metastases From Breast Cancer Helping Artificial Intelligence Be Seen [J].
Golden, Jeffrey Alan .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (22) :2184-2186
[9]   Identifying facial phenotypes of genetic disorders using deep learning [J].
Gurovich, Yaron ;
Hanani, Yair ;
Bar, Omri ;
Nadav, Guy ;
Fleischer, Nicole ;
Gelbman, Dekel ;
Basel-Salmon, Lina ;
Krawitz, Peter M. ;
Kamphausen, Susanne B. ;
Zenker, Martin ;
Bird, Lynne M. ;
Gripp, Karen W. .
NATURE MEDICINE, 2019, 25 (01) :60-+
[10]   Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network [J].
Hannun, Awni Y. ;
Rajpurkar, Pranav ;
Haghpanahi, Masoumeh ;
Tison, Geoffrey H. ;
Bourn, Codie ;
Turakhia, Mintu P. ;
Ng, Andrew Y. .
NATURE MEDICINE, 2019, 25 (01) :65-+