Proposal for realizing the quantum spin Hall phase in a gapped graphene bilayer

被引:16
作者
Zhai, Xuechao [1 ]
Jin, Guojun [2 ,3 ]
机构
[1] Nanjing Univ Posts & Telecommun, Informat Phys Res Ctr, Nanjing 210023, Jiangsu, Peoples R China
[2] Nanjing Univ, Dept Phys, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China
[3] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
TRANSPORT; BANDGAP; FIELD; MODEL;
D O I
10.1103/PhysRevB.93.205427
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Quantum spin Hall (QSH) insulators with gapless edge states have potential applications in designing low-dissipation devices. In spite of many predictions, to verify the QSH phase in graphene layered materials experimentally is still difficult due to the obstacle in achieving spin-orbit coupling strong enough. We propose a Rashba system of graphene bilayer gapped by dielectric layers and show it can host a valley-polarized QSH phase even when theRashba interaction approached zero. Such a system exhibits asymmetric topological quantum phase transitions under opposite interlayer biases, due to the dielectric-potential induced inversion asymmetry in the absence of interlayer bias. Specifically, the quantum valley Hall phase exists in zigzag-edged nanoribbons under the bias in one direction but is absent under the reverse bias. These topological phenomena can be well understood by the competition among the dielectric-induced potential, Rashba interaction, and interlayer bias in modulating the bulk band gap. Moreover, the phase diagram is given and the corresponding phase boundaries are derived analytically. Our findings provide a possible way to detect the QSH-related asymmetric topological quantum phenomena in graphene bilayer based on the current experimental technology.
引用
收藏
页数:6
相关论文
共 32 条
[1]   Colloquium: Graphene spectroscopy [J].
Basov, D. N. ;
Fogler, M. M. ;
Lanzara, A. ;
Wang, Feng ;
Zhang, Yuanbo .
REVIEWS OF MODERN PHYSICS, 2014, 86 (03) :959-994
[2]  
Calleja F, 2015, NAT PHYS, V11, P43, DOI [10.1038/NPHYS3173, 10.1038/nphys3173]
[3]   Valley-Polarized Metals and Quantum Anomalous Hall Effect in Silicene [J].
Ezawa, Motohiko .
PHYSICAL REVIEW LETTERS, 2012, 109 (05)
[4]   Detecting topological currents in graphene superlattices [J].
Gorbachev, R. V. ;
Song, J. C. W. ;
Yu, G. L. ;
Kretinin, A. V. ;
Withers, F. ;
Cao, Y. ;
Mishchenko, A. ;
Grigorieva, I. V. ;
Novoselov, K. S. ;
Levitov, L. S. ;
Geim, A. K. .
SCIENCE, 2014, 346 (6208) :448-451
[6]   Topological valley transport at bilayer graphene domain walls [J].
Ju, Long ;
Shi, Zhiwen ;
Nair, Nityan ;
Lv, Yinchuan ;
Jin, Chenhao ;
Velasco, Jairo, Jr. ;
Ojeda-Aristizabal, Claudia ;
Bechtel, Hans A. ;
Martin, Michael C. ;
Zettl, Alex ;
Analytis, James ;
Wang, Feng .
NATURE, 2015, 520 (7549) :650-U356
[7]   Z2 topological order and the quantum spin Hall effect -: art. no. 146802 [J].
Kane, CL ;
Mele, EJ .
PHYSICAL REVIEW LETTERS, 2005, 95 (14)
[8]  
Kim KS, 2013, NAT MATER, V12, P887, DOI [10.1038/nmat3717, 10.1038/NMAT3717]
[9]   Giant Rashba splitting in graphene due to hybridization with gold [J].
Marchenko, D. ;
Varykhalov, A. ;
Scholz, M. R. ;
Bihlmayer, G. ;
Rashba, E. I. ;
Rybkin, A. ;
Shikin, A. M. ;
Rader, O. .
NATURE COMMUNICATIONS, 2012, 3
[10]   The electronic properties of bilayer graphene [J].
McCann, Edward ;
Koshino, Mikito .
REPORTS ON PROGRESS IN PHYSICS, 2013, 76 (05)