Stability of the multidimensional wave equation in port-Hamiltonian modelling

被引:4
|
作者
Jacob, Birgit [1 ]
Skrepek, Nathanael [1 ]
机构
[1] Berg Univ Wuppertal, Fak Math & Nat Wissensch, IMACM, Wuppertal, Germany
基金
欧盟地平线“2020”;
关键词
BOUNDARY CONTROL-SYSTEMS; DECAY;
D O I
10.1109/CDC45484.2021.9683501
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We investigate the stability of the wave equation with spatial dependent coefficients on a bounded multidimensional domain. The system is stabilized via a scattering passive feedback law. We formulate the wave equation in a port-Hamiltonian fashion and show that the system is semi-uniformly stable, which is a stability concept between exponential stability and strong stability. Hence, this also implies strong stability of the system. In particular, classical solutions are uniformly stable. This will be achieved by showing that the spectrum of the port-Hamiltonian operator is contained in the left half plane C_ and the port-Hamiltonian operator generates a contraction semigroup. Moreover, we show that the spectrum consists of eigenvalues only and the port-Hamiltonian operator has a compact resolvent.
引用
收藏
页码:6188 / 6193
页数:6
相关论文
共 50 条
  • [21] PORT-HAMILTONIAN SYSTEMS ON GRAPHS
    van der Schaft, A. J.
    Maschke, B. M.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2013, 51 (02) : 906 - 937
  • [22] Port-Hamiltonian Modeling for Control
    van der Schaft, Arjan
    ANNUAL REVIEW OF CONTROL, ROBOTICS, AND AUTONOMOUS SYSTEMS, VOL 3, 2020, 2020, 3 : 393 - 416
  • [23] Memristive port-Hamiltonian Systems
    Jeltsema, Dimitri
    van der Schaft, Arjan J.
    MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2010, 16 (02) : 75 - 93
  • [24] Stochastic Port-Hamiltonian Systems
    Cordoni, Francesco
    Di Persio, Luca
    Muradore, Riccardo
    JOURNAL OF NONLINEAR SCIENCE, 2022, 32 (06)
  • [25] Observability for port-Hamiltonian systems
    Jacob, Birgit
    Zwart, Hans
    2021 EUROPEAN CONTROL CONFERENCE (ECC), 2021, : 2052 - 2057
  • [26] Discrete port-Hamiltonian systems
    Talasila, V
    Clemente-Gallardo, J
    van der Schaft, AJ
    SYSTEMS & CONTROL LETTERS, 2006, 55 (06) : 478 - 486
  • [27] Port-Hamiltonian Modelling of Modular Multilevel Converters with Fixed Equilibrium Point
    Bergna-Diaz, Gilbert
    Sanchez, Santiago
    Tedeschi, Elisabetta
    2017 TWELFTH INTERNATIONAL CONFERENCE ON ECOLOGICAL VEHICLES AND RENEWABLE ENERGIES (EVER), 2017,
  • [28] Irreversible port-Hamiltonian modelling of 1D compressible fluids
    Mora, Luis A.
    Le Gorrec, Yann
    Ramirez, Hector
    Maschke, Bernhard
    IFAC PAPERSONLINE, 2021, 54 (19): : 64 - 69
  • [29] Port-Hamiltonian modelling and energy-based control of the Timoshenko beam
    Siuka, Andreas
    Schoeberl, Markus
    Schlacher, Kurt
    ACTA MECHANICA, 2011, 222 (1-2) : 69 - 89
  • [30] Irreversible port-Hamiltonian modelling of 3D compressible fluids
    Mora, Luis A.
    Le Gorrec, Yann
    Matignon, Denis
    Ramirez, Hector
    IFAC PAPERSONLINE, 2023, 56 (02): : 6394 - 6399