Stability of the multidimensional wave equation in port-Hamiltonian modelling

被引:4
|
作者
Jacob, Birgit [1 ]
Skrepek, Nathanael [1 ]
机构
[1] Berg Univ Wuppertal, Fak Math & Nat Wissensch, IMACM, Wuppertal, Germany
基金
欧盟地平线“2020”;
关键词
BOUNDARY CONTROL-SYSTEMS; DECAY;
D O I
10.1109/CDC45484.2021.9683501
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We investigate the stability of the wave equation with spatial dependent coefficients on a bounded multidimensional domain. The system is stabilized via a scattering passive feedback law. We formulate the wave equation in a port-Hamiltonian fashion and show that the system is semi-uniformly stable, which is a stability concept between exponential stability and strong stability. Hence, this also implies strong stability of the system. In particular, classical solutions are uniformly stable. This will be achieved by showing that the spectrum of the port-Hamiltonian operator is contained in the left half plane C_ and the port-Hamiltonian operator generates a contraction semigroup. Moreover, we show that the spectrum consists of eigenvalues only and the port-Hamiltonian operator has a compact resolvent.
引用
收藏
页码:6188 / 6193
页数:6
相关论文
共 50 条
  • [1] Port-Hamiltonian Representation and Discretization of Undamped Wave Equation System
    Xu, Qingqing
    Dubljevic, Stevan
    IFAC PAPERSONLINE, 2016, 49 (08): : 309 - 314
  • [2] Distributed Damping Assignment for a Wave Equation in the Port-Hamiltonian Framework
    Redaud, Jeanne
    Auriol, Jean
    Le Gorrec, Yann
    IFAC PAPERSONLINE, 2022, 55 (26): : 155 - 161
  • [3] EPHS: A Port-Hamiltonian Modelling Language
    Lohmayer, Markus
    Leyendecker, Sigrid
    IFAC PAPERSONLINE, 2022, 55 (30): : 347 - 352
  • [4] On the stability of port-Hamiltonian descriptor systems
    Gernandt, Hannes
    Haller, Frederic E.
    IFAC PAPERSONLINE, 2021, 54 (19): : 137 - 142
  • [5] Distributed port-Hamiltonian modelling for irreversible processes
    Zhou, W.
    Hamroun, B.
    Couenne, F.
    Le Gorrec, Y.
    MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2017, 23 (01) : 3 - 22
  • [6] Exergetic port-Hamiltonian systems: modelling basics
    Lohmayer, Markus
    Kotyczka, Paul
    Leyendecker, Sigrid
    MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2021, 27 (01) : 489 - 521
  • [7] Stability properties of some port-Hamiltonian SPDEs
    Kuchling, Peter
    Rudiger, Barbara
    Ugurcan, Baris
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2024,
  • [8] Port-Hamiltonian Modelling for Analysis and Control of Gas Networks
    Malan, Albertus J.
    Rausche, Lukas
    Strehle, Felix
    Hohmann, Soeren
    IFAC PAPERSONLINE, 2023, 56 (02): : 5431 - 5437
  • [9] Port-Hamiltonian Modelling of a Car-like Robot
    Herrera, Daniel
    Gimenez, Javier
    Carelli, Ricardo
    2015 XVI WORKSHOP ON INFORMATION PROCESSING AND CONTROL (RPIC), 2015,
  • [10] Modelling pedestrian collective dynamics with port-Hamiltonian systems
    Tordeux, Antoine
    Totzeck, Claudia
    Lassarre, Sylvain
    Lebacque, Jean-Patrick
    TRAFFIC AND GRANULAR FLOW 2022, TGF 2022, 2024, 443 : 187 - 195