Unsupervised segmentation of stents corrupted by artifacts in medical X-ray images

被引:0
作者
Gangloff, Hugo [1 ,2 ]
Monfrini, Emmanuel [3 ]
Collet, Christophe [1 ]
Chakfe, Nabil [2 ,4 ]
机构
[1] Univ Strasbourg, ICube, CNRS UMR 7357, Illkirch Graffenstaden, France
[2] GEPROVAS, Strasbourg, France
[3] Telecom SudParis, Inst Polytech Paris, SAMOVAR, Evry, France
[4] CHRU, Dept Vasc Surg & Kidney Transplantat, Strasbourg, France
来源
2020 TENTH INTERNATIONAL CONFERENCE ON IMAGE PROCESSING THEORY, TOOLS AND APPLICATIONS (IPTA) | 2020年
关键词
image segmentation; probabilistic and statistical models; metal artifacts; X-ray imaging;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a new methodology for the segmentation of stents in 3D X-ray acquisitions. Such data are often corrupted by strong artifacts around the stent, requiring the development of a robust algorithm: because of the medical application, we need to produce an accurate segmentation. Moreover, we aim at developping a robust technique that can handle heterogeneous data. We propose a two-step, coarse-to-fine approach, that handles the corrupted cases. This approach leads to better results illustrated in the context of metallic artefact reduction.
引用
收藏
页数:6
相关论文
共 19 条
  • [1] A MAXIMIZATION TECHNIQUE OCCURRING IN STATISTICAL ANALYSIS OF PROBABILISTIC FUNCTIONS OF MARKOV CHAINS
    BAUM, LE
    PETRIE, T
    SOULES, G
    WEISS, N
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1970, 41 (01): : 164 - &
  • [2] Bricq S., 2008, Grand Challenge Work.: Mult. Scler. Lesion Segm. Challenge, P1
  • [3] Celeux G., 1992, Stochastics: An International Journal of Probability and Stochastic Processes, V41, P119, DOI [10.1080/17442509208833797, DOI 10.1080/17442509208833797]
  • [4] Courbot Jean-Baptiste, 2016, J Comput Surg, V4, P1, DOI 10.1186/s40244-016-0018-0
  • [5] Demirci S, 2011, LECT NOTES COMPUT SC, V6891, P178, DOI 10.1007/978-3-642-23623-5_23
  • [6] Frangi AF, 1998, LECT NOTES COMPUT SC, V1496, P130, DOI 10.1007/BFb0056195
  • [7] Assessing, the segmentation performance of pairwise and triplet Markov models
    Gorynin, Ivan
    Gangloff, Hugo
    Monfrini, Emmanuel
    Pieczynski, Wojciech
    [J]. SIGNAL PROCESSING, 2018, 145 : 183 - 192
  • [8] Haidekker M.A., 2011, Advanced biomedical image analysis
  • [9] Automatic segmentation of the wire frame of stent grafts from CT data
    Klein, Almar
    van der Vliet, J. Adam
    Oostveen, Luuk J.
    Hoogeveen, Yvonne
    Kool, Leo J. Schultze
    Renema, W. Klaas Jan
    Slump, Cornelis H.
    [J]. MEDICAL IMAGE ANALYSIS, 2012, 16 (01) : 127 - 139
  • [10] Learning deformation and structure simultaneously: In situ endograft deformation analysis
    Langs, Georg
    Paragios, Nikos
    Desgranges, Pascal
    Rahmouni, Alain
    Kobeiter, Hicham
    [J]. MEDICAL IMAGE ANALYSIS, 2011, 15 (01) : 12 - 21