An implicit Runge-Kutta method for integration of differential algebraic equations of multibody dynamics

被引:45
|
作者
Negrut, D
Haug, EJ
German, HC
机构
[1] MSC Software, Ann Arbor, MI 48105 USA
[2] Univ Iowa, Dept Mech Engn, Iowa City, IA 52246 USA
关键词
implicit integration; index; 3; DAE; state-space form; singly diagonal implicit Runge-Kutta formula; coordinate partitioning;
D O I
10.1023/A:1022506312444
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
When performing dynamic analysis of a constrained mechanical system, a set of index 3 Differential Algebraic Equations (DAE) describes the time evolution of the model. This paper presents a state space DAE solution framework that can embed an arbitrary implicit Ordinary Differential Equations (ODE) code for numerical integration of a reduced set of state space ordinary differential equations. This solution framework is constructed with the goal of leveraging with minimal effort established off the shelf implicit ODE integrators for efficiently solving the DAE of multibody dynamics. This concept is demonstrated by embedding a well-known public domain singly diagonal implicit Runge-Kutta code in the framework provided. The resulting L-stable, stiffly accurate implicit algorithm is shown to be two orders of magnitude faster than a state of the art explicit algorithm when used to simulate a stiff vehicle model.
引用
收藏
页码:121 / 142
页数:22
相关论文
共 50 条
  • [1] An Implicit Runge–Kutta Method for Integration of Differential Algebraic Equations of Multibody Dynamics
    Dan Negrut
    Edward J. Haug
    Horatiu C. German
    Multibody System Dynamics, 2003, 9 : 121 - 142
  • [2] Implicit Runge-Kutta integration of the equations of multibody dynamics in descriptor form
    Haug, EJ
    Negrut, D
    Engstler, C
    MECHANICS OF STRUCTURES AND MACHINES, 1999, 27 (03): : 337 - 364
  • [4] ON THE ALGEBRAIC EQUATIONS IN IMPLICIT RUNGE-KUTTA METHODS
    HUNDSDORFER, WH
    SPIJKER, MN
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (03) : 583 - 594
  • [5] PROJECTED IMPLICIT RUNGE-KUTTA METHODS FOR DIFFERENTIAL-ALGEBRAIC EQUATIONS
    ASCHER, UM
    PETZOLD, LR
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (04) : 1097 - 1120
  • [6] Iterated Runge-Kutta methods of implicit differential-algebraic equations
    Sun, Wei
    Fan, Xiao-Guang
    Wang, Yu-Ying
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2006, 13 (05): : 555 - 567
  • [7] IMPLICIT RUNGE-KUTTA METHOD FOR MOLECULAR-DYNAMICS INTEGRATION
    JANEZIC, D
    OREL, B
    JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 1993, 33 (02): : 252 - 257
  • [8] Efficient implementation of implicit Runge-Kutta methods for differential and differential-algebraic equations
    Kulikov, G.Yu.
    Vestnik Moskovskogo Universiteta. Ser. 1 Matematika Mekhanika, 2002, (05): : 3 - 7
  • [9] ON THE EXISTENCE OF SOLUTIONS TO THE ALGEBRAIC EQUATIONS IN IMPLICIT RUNGE-KUTTA METHODS
    CROUZEIX, M
    HUNDSDORFER, WH
    SPIJKER, MN
    BIT, 1983, 23 (01): : 84 - 91
  • [10] PARALLELIZATION OF AN IMPLICIT RUNGE-KUTTA METHOD FOR MOLECULAR-DYNAMICS INTEGRATION
    JANEZIC, D
    TROBEC, R
    JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 1994, 34 (03): : 641 - 646