Edge states in a honeycomb lattice: Effects of anisotropic hopping and mixed edges

被引:5
作者
Dahal, Hari P. [1 ]
Hu, Zi-Xiang [2 ,3 ,4 ]
Sinitsyn, N. A. [5 ]
Yang, Kun [3 ,4 ]
Balatsky, A. V. [1 ,6 ]
机构
[1] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[2] Asia Pacific Ctr Theoret Phys, Pohang 790784, Gyeongbuk, South Korea
[3] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA
[4] Florida State Univ, Dept Phys, Tallahassee, FL 32310 USA
[5] Los Alamos Natl Lab, CNLS CCS 3, Los Alamos, NM 87545 USA
[6] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA
基金
美国国家科学基金会;
关键词
ELECTRONIC-PROPERTIES; GRAPHENE; GAS;
D O I
10.1103/PhysRevB.81.155406
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the edge states in graphene in the presence of a magnetic field perpendicular to the plane of the lattice. Most of the work done so far discusses the edge states in either zigzag or armchair edge graphene considering an isotropic electron hopping. In practice, graphene can have a mixture of armchair and zigzag edges and the electron hopping can be anisotropic, which is the subject of this article. We predict that the mixed edges smear the enhanced local density of states (LDOS) at E=0 of the zigzag edge and, on the other hand, the anisotropic hopping gives rise to the enhanced LDOS at E=0 in the armchair edge. The behavior of the LDOS can be studied using scanning tunneling microscopy (STM) experiments. We suggest that care must be taken while interpreting the STM data, because the clear distinction between the zigzag edge (enhanced LDOS at E=0) and armchair edge (suppressed LDOS at E=0) can be lost if the hopping is not isotropic and if the edges are mixed.
引用
收藏
页数:8
相关论文
共 41 条
[11]  
Fujita M., 1920, J PHYS SOC JPN, V65, P1996
[12]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[13]   STABILIZATION OF FLUX STATES ON 2-DIMENSIONAL LATTICES [J].
HASEGAWA, Y ;
HATSUGAI, Y ;
KOHMOTO, M ;
MONTAMBAUX, G .
PHYSICAL REVIEW B, 1990, 41 (13) :9174-9182
[14]   Quantum Hall effect and the topological number in graphene [J].
Hasegawa, Yasumasa ;
Kohmoto, Mahito .
PHYSICAL REVIEW B, 2006, 74 (15)
[15]   Structural (n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering [J].
Jorio, A ;
Saito, R ;
Hafner, JH ;
Lieber, CM ;
Hunter, M ;
McClure, T ;
Dresselhaus, G ;
Dresselhaus, MS .
PHYSICAL REVIEW LETTERS, 2001, 86 (06) :1118-1121
[16]   Quantum spin Hall effect in graphene [J].
Kane, CL ;
Mele, EJ .
PHYSICAL REVIEW LETTERS, 2005, 95 (22)
[17]   Observation of zigzag and armchair edges of graphite using scanning tunneling microscopy and spectroscopy [J].
Kobayashi, Y ;
Fukui, K ;
Enoki, T ;
Kusakabe, K ;
Kaburagi, Y .
PHYSICAL REVIEW B, 2005, 71 (19)
[18]   Zero modes and edge states of the honeycomb lattice [J].
Kohmoto, Mahito ;
Hasegawa, Yasumasa .
PHYSICAL REVIEW B, 2007, 76 (20)
[19]   Scanning Tunneling Spectroscopy of Graphene on Graphite [J].
Li, Guohong ;
Luican, Adina ;
Andrei, Eva Y. .
PHYSICAL REVIEW LETTERS, 2009, 102 (17)
[20]   Symmetry-based approach to electron-phonon interactions in graphene [J].
Manes, J. L. .
PHYSICAL REVIEW B, 2007, 76 (04)