Edge states in a honeycomb lattice: Effects of anisotropic hopping and mixed edges

被引:5
作者
Dahal, Hari P. [1 ]
Hu, Zi-Xiang [2 ,3 ,4 ]
Sinitsyn, N. A. [5 ]
Yang, Kun [3 ,4 ]
Balatsky, A. V. [1 ,6 ]
机构
[1] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[2] Asia Pacific Ctr Theoret Phys, Pohang 790784, Gyeongbuk, South Korea
[3] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA
[4] Florida State Univ, Dept Phys, Tallahassee, FL 32310 USA
[5] Los Alamos Natl Lab, CNLS CCS 3, Los Alamos, NM 87545 USA
[6] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA
基金
美国国家科学基金会;
关键词
ELECTRONIC-PROPERTIES; GRAPHENE; GAS;
D O I
10.1103/PhysRevB.81.155406
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the edge states in graphene in the presence of a magnetic field perpendicular to the plane of the lattice. Most of the work done so far discusses the edge states in either zigzag or armchair edge graphene considering an isotropic electron hopping. In practice, graphene can have a mixture of armchair and zigzag edges and the electron hopping can be anisotropic, which is the subject of this article. We predict that the mixed edges smear the enhanced local density of states (LDOS) at E=0 of the zigzag edge and, on the other hand, the anisotropic hopping gives rise to the enhanced LDOS at E=0 in the armchair edge. The behavior of the LDOS can be studied using scanning tunneling microscopy (STM) experiments. We suggest that care must be taken while interpreting the STM data, because the clear distinction between the zigzag edge (enhanced LDOS at E=0) and armchair edge (suppressed LDOS at E=0) can be lost if the hopping is not isotropic and if the edges are mixed.
引用
收藏
页数:8
相关论文
共 41 条
[1]   Spin-filtered edge states and quantum hall effect in graphene [J].
Abanin, DA ;
Lee, PA ;
Levitov, LS .
PHYSICAL REVIEW LETTERS, 2006, 96 (17)
[2]   Charge and spin transport at the quantum Hall edge of graphene [J].
Abanin, Dmitry A. ;
Lee, Patrick A. ;
Levitov, Leonid S. .
SOLID STATE COMMUNICATIONS, 2007, 143 (1-2) :77-85
[3]   Boundary conditions for Dirac fermions on a terminated honeycomb lattice [J].
Akhmerov, A. R. ;
Beenakker, C. W. J. .
PHYSICAL REVIEW B, 2008, 77 (08)
[4]   Edge states for the n=0 Laudau level in graphene [J].
Arikawa, Mitsuhiro ;
Hatsugai, Yasuhiro ;
Aoki, Hideo .
25TH INTERNATIONAL CONFERENCE ON LOW TEMPERATURE PHYSICS (LT25), PART 2, 2009, 150
[5]   Edge states and the quantized Hall effect in graphene [J].
Brey, L ;
Fertig, HA .
PHYSICAL REVIEW B, 2006, 73 (19)
[6]   Electronic states of graphene nanoribbons studied with the Dirac equation [J].
Brey, L ;
Fertig, HA .
PHYSICAL REVIEW B, 2006, 73 (23)
[7]   Edge and surface states in the quantum Hall effect in graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. .
PHYSICAL REVIEW B, 2006, 73 (20)
[8]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[9]   Intrinsic and extrinsic performance limits of graphene devices on SiO2 [J].
Chen, Jian-Hao ;
Jang, Chaun ;
Xiao, Shudong ;
Ishigami, Masa ;
Fuhrer, Michael S. .
NATURE NANOTECHNOLOGY, 2008, 3 (04) :206-209
[10]   Luttinger liquid at the edge of undoped graphene in a strong magnetic field [J].
Fertig, H. A. ;
Brey, L. .
PHYSICAL REVIEW LETTERS, 2006, 97 (11)