On packing of rectangles in a rectangle

被引:8
作者
Joos, Antal [1 ]
机构
[1] Univ Dunaujvaros, Tancsics Mihaly Utca 1-A, H-2400 Dunaujvaros, Hungary
关键词
Packing; Rectangle; Smallest area; SQUARE;
D O I
10.1016/j.disc.2018.06.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is known that Sigma(infinity)(i=1) 1/(i(i+1)) = 1. In 1968, Meir and Moser (1968) asked for finding the smallest epsilon such that all the rectangles of sizes 1/i x 1/(i + 1), i is an element of {1, 2,...}, can be packed into a square or a rectangle of area 1 + epsilon. First we show that in Paulhus (1997), the key lemma, as a statement, in the proof of the smallest published upper bound of the minimum area is false, then we prove a different new upper bound. We show that epsilon <= 1.26 . 10(-9) if the rectangles are packed into a square and epsilon <= 6.878 . 10(-10) if the rectangles are packed into a rectangle. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:2544 / 2552
页数:9
相关论文
共 11 条
[1]   Two packing problems [J].
Balint, V .
DISCRETE MATHEMATICS, 1998, 178 (1-3) :233-236
[2]  
Balint V., 2012, POLLACK PERIODICA IN, V1, P21
[3]  
Balint V., 1992, ANN DISCRETE MATH, V51, P17
[4]  
Balint V., 2015, ACTA MATH NITRIENSIA, P24
[5]  
Balint V., 1990, ANN DISCRETE MATH, P17
[6]  
Brass P., 2005, Research Problems in Discrete Geometry, P121
[7]   Perfect square packings [J].
Chalcraft, A .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2000, 92 (02) :158-172
[8]   ON PACKINGS OF SQUARES AND RECTANGLES [J].
JENNINGS, D .
DISCRETE MATHEMATICS, 1995, 138 (1-3) :293-300
[9]   ON PACKING UNEQUAL RECTANGLES IN THE UNIT SQUARE [J].
JENNINGS, D .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1994, 68 (02) :465-469
[10]  
Meir A., 1968, J COMB THEORY, V5, P126, DOI DOI 10.1016/S0021-9800(68)80047-X