Bridging the gap between B-spline and polynomial regression model

被引:3
|
作者
Satoh, K
Yanagihara, H
Ohtaki, M
机构
[1] Hiroshima Univ, Res Inst Radiat Biol & Med, Dept Environmetr & Biometr, Minami Ku, Hiroshima 7348553, Japan
[2] Inst Stat Math, Dept Stat Methodol, Minato Ku, Tokyo, Japan
关键词
B-spline; information criterion; nonparametric regression; polynomial regression; semi-parametric regression; simple regression;
D O I
10.1081/SAC-120013120
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
B-splines are flexible smoothers and a linear curve including a constant line is a hard but meaningful in practical situations. In this paper, we propose a method to select the better of two types of models by using an information criterion in order to take both advantages. Numerical study and an example of multiple nonparametric regression analysis showed good performance of our methodology.
引用
收藏
页码:179 / 190
页数:12
相关论文
共 50 条
  • [1] Approximating uniform rational B-spline curves by polynomial B-spline curves
    Xu Huixia
    Hu Qianqian
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 244 : 10 - 18
  • [2] Extending B-spline by piecewise polynomial
    Liu, Xinyue
    Wang, Xingce
    Wu, Zhongke
    COMPUTER ANIMATION AND VIRTUAL WORLDS, 2020, 31 (4-5)
  • [3] ON B-SPLINE M-ESTIMATORS IN A SEMIPARAMETRIC REGRESSION MODEL
    SHI Peide (Department of Probability and Statistics
    Systems Science and Mathematical Sciences, 1994, (03) : 270 - 281
  • [4] Kernel density regression in the additive model: a B-spline approach
    Li, Facheng
    Liu, Huilan
    STATISTICAL PAPERS, 2025, 66 (01)
  • [6] Trigonometric polynomial B-spline with shape parameter
    WANG Wentao* and WANG Guozhao(Institute of Computer Graphics and Image
    Progress in Natural Science, 2004, (11) : 87 - 90
  • [7] Uniform hyperbolic polynomial B-spline curves
    Lü, YG
    Wang, GZ
    Yang, XN
    COMPUTER AIDED GEOMETRIC DESIGN, 2002, 19 (06) : 379 - 393
  • [8] Uniform trigonometric polynomial B-spline curves
    Yonggang Lü
    Guozhao Wang
    Xunnian Yang
    Science in China Series F Information Sciences, 2002, 45 : 335 - 343
  • [9] Trigonometric polynomial B-spline with shape parameter
    Wang, WT
    Wang, GZ
    PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2004, 14 (11) : 1023 - 1026
  • [10] Uniform trigonometric polynomial B-spline curves
    Lü, YG
    Wang, GZ
    Yang, XN
    SCIENCE IN CHINA SERIES F, 2002, 45 (05): : 335 - 343