Back and forth between Rydberg atoms and ultracold plasmas

被引:50
|
作者
Gallagher, TF [1 ]
Pillet, P
Robinson, MP
Laburthe-Tolra, B
Noel, MW
机构
[1] Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA
[2] CNRS 2, Aime Cotton Lab, F-91405 Orsay, France
[3] Bryn Mawr Coll, Dept Phys, Bryn Mawr, PA 19010 USA
关键词
D O I
10.1364/JOSAB.20.001091
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
By photoionizing cold, trapped atoms it is possible to produce ultracold plasmas with temperatures in the vicinity of 1 K, roughly 4 orders of magnitude colder than conventional cold plasmas. After the first photoelectrons leave, the resulting positive charge traps the remaining electrons in the plasma. Monitoring the dynamics of the expansion of these plasmas shows explicitly the flow of energy from electrons to the ionic motion, which is manifested as the expansion of the plasma. The electron energy can either be their initial energy from photoionization or can come from the energy redistribution inherent in recombination and superelastic scattering from recombined Rydberg atoms. If the cold atoms are excited to Rydberg states instead of being photoionized, the resulting cold Rydberg gas quickly evolves into an ultracold plasma. After a few percent of the atoms are ionized by collisions or blackbody radiation, electrons are trapped by the resulting positive charge, and they quickly lead to ionization of the Rydberg atoms, forming a plasma. While the source of this energy is not clear, a likely candidate is superelastic scattering, also thought to be important for the expansion of deliberately made plasmas. (C) 2003 Optical Society of America.
引用
收藏
页码:1091 / 1097
页数:7
相关论文
共 50 条
  • [1] Controllable Interactions between Rydberg Atoms and Ultracold Plasmas
    Pillet, P.
    Vogt, T.
    Viteau, M.
    Chotia, A.
    Zhao, J.
    Comparat, D.
    Gallagher, T. F.
    Tate, D.
    Gaetan, A.
    Miroshnychenko, Y.
    Wilk, T.
    Browaeys, A.
    Grangier, P.
    XXVI INTERNATIONAL CONFERENCE ON PHOTONIC, ELECTRONIC AND ATOMIC COLLISIONS, 2009, 194
  • [2] Studies of ultracold Rydberg atoms and plasmas
    Estrin, A.
    Ensher, J.R.
    Chen, C.-H.
    Sanborn, C.
    Eyler, E.E.
    Gould, P.L.
    Conference on Quantum Electronics and Laser Science (QELS) - Technical Digest Series, 2000, : 140 - 141
  • [3] Topical issue on "Ultracold plasmas and cold Rydberg atoms"
    Pillet, Pierre
    Comparat, Daniel
    EUROPEAN PHYSICAL JOURNAL D, 2006, 40 (01): : 1 - 2
  • [4] Topical issue on “Ultracold plasmas and cold Rydberg atoms”
    Pierre Pillet
    Daniel Comparat
    The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics, 2006, 40 : 1 - 2
  • [5] Use of Rydberg atoms to control electron temperatures in ultracold plasmas
    T. Pohl
    D. Comparat
    N. Zahzam
    T. Vogt
    P. Pillet
    T. Pattard
    The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics, 2006, 40 : 45 - 50
  • [6] Use of Rydberg atoms to control electron temperatures in ultracold plasmas
    Pohl, T.
    Comparat, D.
    Zahzam, N.
    Vogt, T.
    Pillet, P.
    Pattard, T.
    EUROPEAN PHYSICAL JOURNAL D, 2006, 40 (01): : 45 - 50
  • [7] Ultracold Rydberg atoms
    Pillet, P
    Akulin, V
    Comparat, D
    de Tomasi, F
    Fioretti, A
    Mourachko, I
    ANNALES DE PHYSIQUE, 1998, 23 : 49 - 56
  • [8] Ultracold plasmas and Rydberg gases
    Bergeson, S
    Killian, T
    PHYSICS WORLD, 2003, 16 (02) : 37 - 41
  • [9] Ultracold neutral plasmas and Rydberg gases
    Pattard, T
    Pohl, T
    Rost, JM
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2005, 233 : 132 - 140
  • [10] Observation of Interactions between Trapped Ions and Ultracold Rydberg Atoms
    Ewald, N. V.
    Feldker, T.
    Hirzler, H.
    Furst, H. A.
    Gerritsma, R.
    PHYSICAL REVIEW LETTERS, 2019, 122 (25)