Krasnosel'skii Type Hybrid Fixed Point Theorems and Their Applications to Fractional Integral Equations

被引:24
作者
Srivastava, H. M. [1 ]
Bedre, Sachin V. [2 ,3 ]
Khairnar, S. M. [4 ]
Desale, B. S. [5 ]
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
[2] Mahatma Gandhi Mahavidyalaya, Dept Math, Ahmedpur 413515, Maharashtra, India
[3] North Maharashtra Univ, Dept Math, Jalgaon 415001, Maharashtra, India
[4] MIT Acad Engn, Dept Engn Sci, Pune 412105, Maharashtra, India
[5] Univ Mumbai, Dept Math, Bombay 400032, Maharashtra, India
关键词
PARTIALLY ORDERED SETS;
D O I
10.1155/2014/710746
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Some hybrid fixed point theorems of Krasnosel'skii type, which involve product of two operators, are proved in partially ordered normed linear spaces. These hybrid fixed point theorems are then applied to fractional integral equations for proving the existence of solutions under certain monotonicity conditions blending with the existence of the upper or lower solution.
引用
收藏
页数:9
相关论文
共 11 条
[1]  
[Anonymous], 2006, Journal of the Electrochemical Society
[2]  
Bedre S., 2013, P INT C INF MATH SCI, P390
[3]  
Dhage B.C., 2001, E ASIAN MATH J, V17, P33
[4]  
DHAGE B. C., 1987, PURE APPL MATH SCI, V25, P37
[5]   HYBRID FIXED POINT THEORY IN PARTIALLY ORDERED NORMED LINEAR SPACES AND APPLICATIONS TO FRACTIONAL INTEGRAL EQUATIONS [J].
Dhage, Bapurao C. .
DIFFERENTIAL EQUATIONS & APPLICATIONS, 2013, 5 (02) :155-184
[6]  
Heikkila S., 1994, MONOTONE ITERATIVE T
[7]  
Krasnoselskii M.A., 1964, Topological Methods in the Theory of Nonlinear Integral Equations
[8]   Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations [J].
Nieto, JJ ;
Rodríguez-López, R .
ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2005, 22 (03) :223-239
[9]   Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations [J].
Nieto, Juan J. ;
Rodriguez-Lopez, Rosana .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2007, 23 (12) :2205-2212
[10]  
Podlubny I., 1999, FRACTIONAL DIFFERENT