Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model

被引:1140
作者
Winkler, Michael [1 ]
机构
[1] Univ Duisburg Essen, Fak Math, D-45117 Essen, Germany
关键词
Chemotaxis; Global existence; Boundedness; Blow-up; BLOW-UP; SYSTEM; EQUATIONS;
D O I
10.1016/j.jde.2010.02.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the classical parabolic-parabolic Keller-Segel system {u(t) = Delta u -del . (u del v), x is an element of Omega, t > 0, v(t) = Delta v - v + u, x is an element of , t > 0, under homogeneous Neumann boundary conditions in a smooth bounded domain Omega subset of R-n. It is proved that in space dimension n >= 3, for each q > n/2 and p > n one can find epsilon(0) > 0 Such that if the initial data (u(0), v(0)) satisfy parallel to u(0)parallel to L-q (Omega) < epsilon and parallel to del v(0)parallel to L-q (Omega) < epsilon then the solution is global in time and bounded and asymptotically behaves like the solution of a discoupled system of linear parabolic equations. In particular, (u, v) approaches the steady state (m, m) as t -> infinity, where m is the total mass m := integral Omega u(0) of the population. Moreover, we shall show that if Omega is a ball then for arbitrary prescribed m > 0 there exist unbounded solutions emanating from initial data (u(0), v(0)) having total mass integral Omega u(0) = m. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:2889 / 2905
页数:17
相关论文
共 32 条
[1]  
[Anonymous], 1968, TRANSLATIONS MATH MO
[2]  
[Anonymous], 2000, Adv. Math. Sci. Appl.
[3]  
[Anonymous], ADV DIFFERENTIAL EQU
[4]  
Biler P., 1999, ADV MATH SCI APPL, V9, P347
[5]   Analysis for a system of coupled reaction-diffusion parabolic equations arising in biology [J].
Boy, A .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1996, 32 (04) :15-21
[6]   Diffusion, attraction and collapse [J].
Brenner, MP ;
Constantin, P ;
Kadanoff, LP ;
Schenkel, A ;
Venkataramani, SC .
NONLINEARITY, 1999, 12 (04) :1071-1098
[7]   SEMI-LINEAR SECOND-ORDER ELLIPTIC EQUATIONS IN L1 [J].
BREZIS, H ;
STRAUSS, WA .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1973, 25 (04) :565-590
[8]  
Calvez V, 2008, COMMUN MATH SCI, V6, P417
[9]  
Corrias L., 2004, Milan J. Math., V72, P1, DOI DOI 10.1007/s00032-003-0026-x
[10]   Asymptotic decay for the solutions of the parabolic-parabolic Keller-Segel chemotaxis system in critical spaces [J].
Corrias, Lucilla ;
Perthame, Benoit .
MATHEMATICAL AND COMPUTER MODELLING, 2008, 47 (7-8) :755-764