On a fourth-order problem with spectral and physical parameters in the boundary condition

被引:9
作者
Ben Amara, J [1 ]
Vladimirov, AA
机构
[1] Fac Sci Bizerte, Tunis, Tunisia
[2] Moscow MV Lomonosov State Univ, Fac Mech & Math, Moscow 117234, Russia
关键词
D O I
10.1070/IM2004v068n04ABEH000494
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the following fourth-order boundary-value problem: [(py'')'-qy'] = lambdary, y(0) = y'(0) = y''(1) = [(py'')' - qy'] (1) + lambdamy(1) = 0 with spectral parameter lambda is an element of C and physical parameter m is an element of R. We assign to this problem a linear pencil of bounded operators T-m = T-m (lambda) depending on the physical parameter m and acting from H-2 = {y \ y is an element of W-2(2)[0, 1], y(0) = y'(0) = 0} to the dual space H-2. We study the spectral properties of Tmz and use the results of this study to describe properties of the eigenvalues of the problem for various values of m. In particular, we establish asymptotics of these eigenvalues as m NE arrow 0.
引用
收藏
页码:645 / 658
页数:14
相关论文
共 14 条
[1]  
[Anonymous], 1969, LINEAR DIFFERENTIAL
[2]   A Sturm-Liouville problem with physical and spectral parameters in boundary conditions [J].
Ben Amara, J ;
Shkalikov, AA .
MATHEMATICAL NOTES, 1999, 66 (1-2) :127-134
[3]   STURM-LIOUVILLE PROBLEMS WITH EIGENPARAMETER DEPENDENT BOUNDARY-CONDITIONS [J].
BINDING, PA ;
BROWNE, PJ ;
SEDDIGHI, K .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1994, 37 :57-72
[4]  
Collatz L., 1949, Eigenwertaufgaben mit technischen Anwendungen
[5]  
Glazman IM., 1965, DIRECT METHODS QUALI
[6]  
Kato T., 1966, Perturbation Theory for Linear Operators., DOI [10.1007/978-3-662-12678-3, DOI 10.1007/978-3-662-12678-3]
[7]  
KRYLOV AN, 1932, CERTAIN DIFFERENTIAL
[8]   STRONGLY DEFINITIZABLE LINEAR PENCILS IN HILBERT-SPACE [J].
LANCASTER, P ;
SHKALIKOV, A ;
YE, Q .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1993, 17 (03) :338-360
[9]  
Naimark MA., 1968, Linear differential operators. part ii: Linear differential operators in hilbert space
[10]  
ROSEAU F, 1983, THEORY VIBRATION MEC