Supporting-points processes and some of their applications

被引:19
作者
Baryshnikov, Y [1 ]
机构
[1] Eindhoven Univ Technol, EURANDOM, NL-5600 MB Eindhoven, Netherlands
关键词
D O I
10.1007/s004400050002
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We introduce a stochastic point process of S-supporting points and prove that upon rescaling it converges to a Gaussian field. The notion of S-supporting points specializes (for adequately chosen S) to Pareto (or, more generally, cone) extremal points or to vertices of convex hulls or to centers of generalized Voronoi tessellations in the models of large scale structure of the Universe based on Burgers equation. The central limit theorems proven here imply i.a. the asymptotic normality for the number of convex hull vertices in large Poisson sample from a simple polyhedra or for the number of Pareto (vector extremal) points in Poisson samples with independent coordinates.
引用
收藏
页码:163 / 182
页数:20
相关论文
共 21 条
[1]   ON THE CONVEX-HULL OF UNIFORM RANDOM POINTS IN A SIMPLE D-POLYTOPE [J].
AFFENTRANGER, F ;
WIEACKER, JA .
DISCRETE & COMPUTATIONAL GEOMETRY, 1991, 6 (04) :291-305
[2]   STRATIFIED STRUCTURE OF THE UNIVERSE AND BURGERS-EQUATION - A PROBABILISTIC APPROACH [J].
ALBEVERIO, S ;
MOLCHANOV, SA ;
SURGAILIS, D .
PROBABILITY THEORY AND RELATED FIELDS, 1994, 100 (04) :457-484
[3]  
[Anonymous], 1994, LECT NOTES STAT
[4]  
[Anonymous], TAUBERIAN THEORY ITS
[5]   INTRINSIC VOLUMES AND F-VECTORS OF RANDOM POLYTOPES [J].
BARANY, I .
MATHEMATISCHE ANNALEN, 1989, 285 (04) :671-699
[6]   CONVEX-BODIES, ECONOMIC CAP COVERINGS, RANDOM POLYTOPES [J].
BARANY, I ;
LARMAN, DG .
MATHEMATIKA, 1988, 35 (70) :274-291
[7]  
BARNDORFNIELSEN O, 1966, PROBAB TH APPL, V11
[8]  
BARYSHNIKOV Y, 1986, DISTRIBUTION NUMBER
[9]  
BRILLINGER D, 1975, STOCHASTIC PROCESSES
[10]  
BUCHTA C, 1985, LN MATH, V1114