GENERALIZABLE MULTI-SITE TRAINING AND TESTING OF DEEP NEURAL NETWORKS USING IMAGE NORMALIZATION

被引:0
作者
Onofrey, John A. [1 ]
Casetti-Dinescu, Dana I. [1 ]
Lauritzen, Andreas D. [1 ]
Sarkar, Saradwata [5 ]
Venkataraman, Rajesh [5 ]
Fan, Richard E. [6 ]
Sonn, Geoffrey A. [6 ]
Sprenkle, Preston C. [2 ]
Staib, Lawrence H. [1 ,3 ,4 ]
Papademetris, Xenophon [1 ,3 ]
机构
[1] Yale Univ, Dept Radiol & Biomed Imaging, New Haven, CT 06520 USA
[2] Yale Univ, Dept Urol, New Haven, CT USA
[3] Yale Univ, Dept Biomed Engn, New Haven, CT USA
[4] Yale Univ, Dept Elect Engn, New Haven, CT USA
[5] Eigen, Grass Valley, CA USA
[6] Stanford Univ, Dept Urol, Palo Alto, CA 94304 USA
来源
2019 IEEE 16TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2019) | 2019年
关键词
image segmentation; deep learning; multi-site evaluation; magnetic resonance imaging; prostate; SEGMENTATION;
D O I
10.1109/isbi.2019.8759295
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The ability of medical image analysis deep learning algorithms to generalize across multiple sites is critical for clinical adoption of these methods. Medical imaging data, especially MRI, can have highly variable intensity characteristics across different individuals, scanners, and sites. However, it is not practical to train algorithms with data from all imaging equipment sources at all possible sites. Intensity nonnalization methods offer a potential solution for working with multi -site data. We evaluate five different image normalization methods on training a deep neural network to segment the prostate gland in MRI, Using 600 MRl prostate gland segmentations from two different sites, our results show that both intra-site and inter -site evaluation is critical for assessing the robustness of trained models and that training with single -site data produces models that fail to fully generalize across testing data from sites not included in the training,
引用
收藏
页码:348 / 351
页数:4
相关论文
共 12 条
[1]  
[Anonymous], LANCET
[2]  
[Anonymous], ADV NEURAL INFORM PR
[3]   Reliability of neuroanatomical measurements in a multisite longitudinal study of youth at risk for psychosis [J].
Cannon, Tyrone D. ;
Sun, Frank ;
McEwen, Sarah Jacobson ;
Papademetris, Xenophon ;
He, George ;
van Erp, Theo G. M. ;
Jacobson, Aron ;
Bearden, Carrie E. ;
Walker, Elaine ;
Hu, Xiaoping ;
Zhou, Lei ;
Seidman, Larry J. ;
Thermenos, Heidi W. ;
Cornblatt, Barbara ;
Olvet, Doreen M. ;
Perkins, Diana ;
Belger, Aysenil ;
Cadenhead, Kristin ;
Tsuang, Ming ;
Mirzakhanian, Heline ;
Addington, Jean ;
Frayne, Richard ;
Woods, Scott W. ;
McGlashan, Thomas H. ;
Constable, R. Todd ;
Qiu, Maolin ;
Mathalon, Daniel H. ;
Thompson, Paul ;
Toga, Arthur W. .
HUMAN BRAIN MAPPING, 2014, 35 (05) :2424-2434
[4]   Inter-site Variability in Prostate Segmentation Accuracy Using Deep Learning [J].
Gibson, Eli ;
Hu, Yipeng ;
Ghavami, Nooshin ;
Ahmed, Hashim U. ;
Moore, Caroline ;
Emberton, Mark ;
Huisman, Henkjan J. ;
Barratt, Dean C. .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT IV, 2018, 11073 :506-514
[5]   Prostate boundary segmentation from 2D ultrasound images [J].
Ladak, HM ;
Mao, F ;
Wang, YQ ;
Downey, DB ;
Steinman, DA ;
Fenster, A .
MEDICAL PHYSICS, 2000, 27 (08) :1777-1788
[6]  
LI Z, 2018, IEEE T PATTERN ANAL
[7]   A survey on deep learning in medical image analysis [J].
Litjens, Geert ;
Kooi, Thijs ;
Bejnordi, Babak Ehteshami ;
Setio, Arnaud Arindra Adiyoso ;
Ciompi, Francesco ;
Ghafoorian, Mohsen ;
van der Laak, Jeroen A. W. M. ;
van Ginneken, Bram ;
Sanchez, Clara I. .
MEDICAL IMAGE ANALYSIS, 2017, 42 :60-88
[8]   Evaluation of prostate segmentation algorithms for MRI: The PROMISE12 challenge [J].
Litjens, Geert ;
Toth, Robert ;
van de Ven, Wendy ;
Hoeks, Caroline ;
Kerkstra, Sjoerd ;
van Ginneken, Bram ;
Vincent, Graham ;
Guillard, Gwenael ;
Birbeck, Neil ;
Zhang, Jindang ;
Strand, Robin ;
Malmberg, Filip ;
Ou, Yangming ;
Davatzikos, Christos ;
Kirschner, Matthias ;
Jung, Florian ;
Yuan, Jing ;
Qiu, Wu ;
Gao, Qinquan ;
Edwards, Philip Eddie ;
Maan, Bianca ;
van der Heijden, Ferdinand ;
Ghose, Soumya ;
Mitra, Jhimli ;
Dowling, Jason ;
Barratt, Dean ;
Huisman, Henkjan ;
Madabhushi, Anant .
MEDICAL IMAGE ANALYSIS, 2014, 18 (02) :359-373
[9]  
Nyúl LG, 1999, MAGNET RESON MED, V42, P1072, DOI 10.1002/(SICI)1522-2594(199912)42:6<1072::AID-MRM11>3.0.CO
[10]  
2-M