Existence and non-existence of solitary waves for the critical Klein-Gordon equation coupled with of Maxwell's equations

被引:96
作者
Cassani, D [1 ]
机构
[1] Univ Milan, Dip Matemat F Enriques, I-20133 Milan, Italy
关键词
variational methods; nonlinear elliptic systems; Klein-Gordon equation; critical growth; Pohozaev identity; solitary waves;
D O I
10.1016/j.na.2003.05.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate existence and non-existence of solutions for a nonlinear elliptic system, arising from the coupling of the nonlinear Klein-Gordon equation with the Maxwell equations, when the nonlinearity exhibits critical growth. We prove a non-existence result by a Pohozaev-type argument and then, adding a suitable perturbation, we recover existence of at least a radially symmetric solution. We overcome the lack of compactness relying on the Brezis -Nirenberg method. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:733 / 747
页数:15
相关论文
共 12 条
[1]   ESTIMATES NEAR THE BOUNDARY FOR SOLUTIONS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS SATISFYING GENERAL BOUNDARY CONDITIONS .1. [J].
AGMON, S ;
DOUGLIS, A ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1959, 12 (04) :623-727
[2]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[3]  
[Anonymous], 1997, PROGR NONLINEAR DIFF
[4]   Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations [J].
Benci, V ;
Fortunato, D .
REVIEWS IN MATHEMATICAL PHYSICS, 2002, 14 (04) :409-420
[5]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[6]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[7]  
BREZIS H, 1979, J MATH PURE APPL, V58, P137
[8]  
Brezis H., 1983, ANAL FONCTIONELLE TH
[9]  
Pohozaev S. L., 1965, SOV MATH DOKL, V6, P1408
[10]   EXISTENCE OF SOLITARY WAVES IN HIGHER DIMENSIONS [J].
STRAUSS, WA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1977, 55 (02) :149-162