Rainbow Pancyclicity in Graph Systems

被引:11
作者
Cheng, Yangyang [1 ]
Wang, Guanghui [1 ]
Zhao, Yi [2 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
[2] Georgia State Univ, Dept Math & Stat, Atlanta, GA 30303 USA
基金
中国国家自然科学基金;
关键词
Dirac theorem; rainbow Hamiltonian cycle; absorption technique; pancyclicity; MATCHINGS; VERSION;
D O I
10.37236/9033
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G(1), ...,G(n), be graphs on the same vertex set of size n, each graph with minimum degree delta(G(i)) >= n/2. A recent conjecture of Aharoni asserts that there exists a rainbow Hamiltonian cycle i.e. a cycle with edge set {e(1),..., e(n)} such that e(i) E E(G(i)) for 1 <= i <= n. This can be viewed as a rainbow version of the well-known Dirac theorem. In this paper, we prove this conjecture asymptotically by showing that for every epsilon > 0, there exists an integer N > 0, such that when n > N for any graphs G(1), ...,G(n), on the same vertex set of size n with delta(G(i)) >= (1/2 + epsilon), there exists a rainbow Hamiltonian cycle. Our main tool is the absorption technique. Additionally, we prove that with delta(G(i)) >= (n+1/2) for each i, one can find rainbow cycles of length 3, ..., n - 1.
引用
收藏
页数:9
相关论文
共 14 条
[1]   Large rainbow matchings in general graphs [J].
Aharoni, Ron ;
Berger, Eli ;
Chudnovsky, Maria ;
Howard, David ;
Seymour, Paul .
EUROPEAN JOURNAL OF COMBINATORICS, 2019, 79 :222-227
[2]  
Aharoni R, 2009, ELECTRON J COMB, V16
[3]  
Aharoni Ron, 2020, ADV COMBINATORICS, V2
[4]  
ALBERT M, 1995, ELECTRON J COMB, V2, P10
[5]   Rainbow matchings in bipartite multigraphs [J].
Barat, Janos ;
Gyarfas, Andras ;
Sarkozy, Gabor N. .
PERIODICA MATHEMATICA HUNGARICA, 2017, 74 (01) :108-111
[6]   A RAINBOW DIRAC'S THEOREM [J].
Coulson, Matthew ;
Perarnau, Guillem .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2020, 34 (03) :1670-1692
[7]  
Erdos P., 1983, Graphs and other combinatorial topics (Prague, 1982), V59, P54
[8]   PATH AND CYCLE SUB-RAMSEY NUMBERS AND AN EDGE-COLORING CONJECTURE [J].
HAHN, G ;
THOMASSEN, C .
DISCRETE MATHEMATICS, 1986, 62 (01) :29-33
[9]  
Janson S, 2011, RANDOM GRAPHS, V45
[10]   On a rainbow version of Dirac's theorem [J].
Joos, Felix ;
Kim, Jaehoon .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2020, 52 (03) :498-504