Rainbow Pancyclicity in Graph Systems

被引:7
作者
Cheng, Yangyang [1 ]
Wang, Guanghui [1 ]
Zhao, Yi [2 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
[2] Georgia State Univ, Dept Math & Stat, Atlanta, GA 30303 USA
基金
中国国家自然科学基金;
关键词
Dirac theorem; rainbow Hamiltonian cycle; absorption technique; pancyclicity; MATCHINGS; VERSION;
D O I
10.37236/9033
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G(1), ...,G(n), be graphs on the same vertex set of size n, each graph with minimum degree delta(G(i)) >= n/2. A recent conjecture of Aharoni asserts that there exists a rainbow Hamiltonian cycle i.e. a cycle with edge set {e(1),..., e(n)} such that e(i) E E(G(i)) for 1 <= i <= n. This can be viewed as a rainbow version of the well-known Dirac theorem. In this paper, we prove this conjecture asymptotically by showing that for every epsilon > 0, there exists an integer N > 0, such that when n > N for any graphs G(1), ...,G(n), on the same vertex set of size n with delta(G(i)) >= (1/2 + epsilon), there exists a rainbow Hamiltonian cycle. Our main tool is the absorption technique. Additionally, we prove that with delta(G(i)) >= (n+1/2) for each i, one can find rainbow cycles of length 3, ..., n - 1.
引用
收藏
页数:9
相关论文
共 14 条
  • [1] Large rainbow matchings in general graphs
    Aharoni, Ron
    Berger, Eli
    Chudnovsky, Maria
    Howard, David
    Seymour, Paul
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2019, 79 : 222 - 227
  • [2] Aharoni R, 2009, ELECTRON J COMB, V16
  • [3] Aharoni Ron, 2020, ADV COMBINATORICS, V2
  • [4] ALBERT M, 1995, ELECTRON J COMB, V2, P10
  • [5] [Anonymous], 2011, RANDOM GRAPHS
  • [6] Rainbow matchings in bipartite multigraphs
    Barat, Janos
    Gyarfas, Andras
    Sarkozy, Gabor N.
    [J]. PERIODICA MATHEMATICA HUNGARICA, 2017, 74 (01) : 108 - 111
  • [7] A RAINBOW DIRAC'S THEOREM
    Coulson, Matthew
    Perarnau, Guillem
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2020, 34 (03) : 1670 - 1692
  • [8] Erdos P., 1983, Graphs and other combinatorial topics (Prague, 1982), V59, P54
  • [9] PATH AND CYCLE SUB-RAMSEY NUMBERS AND AN EDGE-COLORING CONJECTURE
    HAHN, G
    THOMASSEN, C
    [J]. DISCRETE MATHEMATICS, 1986, 62 (01) : 29 - 33
  • [10] On a rainbow version of Dirac's theorem
    Joos, Felix
    Kim, Jaehoon
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2020, 52 (03) : 498 - 504