Reconstruction of Sampled Signals with Fractal Functions

被引:16
作者
Navascues, M. A. [1 ]
机构
[1] Univ Zaragoza, Dept Matemat Aplicada, Ctr Politecn Super Ingenieros, Zaragoza 50018, Spain
关键词
Fractal interpolation functions; Chebyshev series; Signal processing; APPROXIMATION;
D O I
10.1007/s10440-009-9501-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper proposes a procedure to build a fractal model for real sampled signals like financial series, climatic data, bioelectric recordings, etc. The mapping constructed owns in general a rich geometric structure. In a first step, the method provides a truncate Chebyshev approximant which performs a low-pass filtering of the signal, displaying in this way the leading cycles of the phenomenon observed. In the second, the polynomial is transformed in a fractal object. The Lipschitz properties of the original signal guarantee a good approximation of the represented variable, whenever the sampling frequency is high enough.
引用
收藏
页码:1199 / 1210
页数:12
相关论文
共 17 条
  • [1] DIMENSION OF A QUANTUM-MECHANICAL PATH
    ABBOTT, LF
    WISE, MB
    [J]. AMERICAN JOURNAL OF PHYSICS, 1981, 49 (01) : 37 - 39
  • [2] Barnsley M., 1988, FRACTALS EVERYWHERE
  • [3] FRACTAL FUNCTIONS AND INTERPOLATION
    BARNSLEY, MF
    [J]. CONSTRUCTIVE APPROXIMATION, 1986, 2 (04) : 303 - 329
  • [4] CHENEY EW, 1966, APPROXIMATION THEORY
  • [5] Davis P. J., 1963, Interpolation and Approximation
  • [6] Edgar G.A., 1993, Classics On Fractals
  • [7] Feynman R. P., 2010, Quantum Mechanics and Path Integrals, DOI 10.1063/1.3048320
  • [8] Kaplan J.L., 1984, Ergod. Theory Dyn. Syst., V4, P261, DOI [10.1017/S0143385700002431, DOI 10.1017/S0143385700002431]
  • [9] Mandelbrot B., 1982, FRACTAL GEOMETRY NAT
  • [10] Navascués MA, 2007, J COMPUT ANAL APPL, V9, P271