Achieving Controllable CoTiO3-Encapsulated TiO2 Heterostructures for Enhanced Photoelectrochemical Water Splitting

被引:33
作者
Li, Yi [1 ]
Yang, Weiguang [1 ,2 ]
Wang, Cong [1 ]
Li, Zhenquan [1 ]
Lai, Jianming [1 ]
Wang, Longjie [1 ]
Huang, Lu [1 ]
机构
[1] Shanghai Univ, Sch Mat Sci & Engn, Dept Elect Informat Mat, Shanghai 200444, Peoples R China
[2] Henan Normal Univ, Coll Chem & Chem Engn, Collaborat Innovat Ctr Henan Prov Mot Power & Key, Xinxiang 453007, Henan, Peoples R China
基金
国家重点研发计划;
关键词
TiO2; water splitting; core-shell; TiO2/CoTiO3; heterostructure; photoresponse; photoelectrochemical; SEMICONDUCTOR NANOWIRES; HETEROJUNCTIONS; PHOTOCATALYSIS; NANOPARTICLES; PERFORMANCE; EVOLUTION; NANORODS; DRIVEN; ARRAYS;
D O I
10.1021/acsaem.9b01694
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
High light absorption capability and excellent charge carrier kinetics play a key role in determining the improved photoelectrochemical (PEC) performance. Here, to extend the photoresponse of TiO2 to the visible-light range, we encapsulated narrow band gap CoTiO3 on the surface of TiO2 nanowire arrays (NWAs) to form a core-shell heterostructure. The CoTiO3 shell thickness can be controlled by the hydrothermal reaction time. The TiO2/CoTiO3 NWAs with 9.7 nm of CoTiO3 shell thickness had the highest J(ph) (0.95 mA/cm(2) at 1.23 V versus RHE) and largest carrier concentration (1.53 x 10(21) cm(-3)), indicating about 30% and 346% increase compared to bare TiO2 NWAs, respectively. The results indicate that the improved photoresponse of TiO2 NWAs can be attributed to the broadened light absorption, effective separation of the photogenerated electron-hole pairs, and fast interfacial charge carrier transfer achieved over a TiO2/CoTiO3 core-shell heterostructure.
引用
收藏
页码:8229 / 8235
页数:13
相关论文
共 36 条
[31]   All-in-one visible-light-driven water splitting by combining nanoparticulate and molecular co-catalysts on CdS nanorods [J].
Wolff, Christian M. ;
Frischmann, Peter D. ;
Schulze, Marcus ;
Bohn, Bernhard J. ;
Wein, Robin ;
Livadas, Panajotis ;
Carlson, Michael T. ;
Jaeckel, Frank ;
Feldmann, Jochen ;
Wuerthner, Frank ;
Stolarczyk, Jacek K. .
NATURE ENERGY, 2018, 3 (10) :862-869
[32]   Simultaneous Enhancement of Charge Separation and Hole Transportation in a TiO2-SrTiO3 Core-Shell Nanowire Photoelectrochemical System [J].
Wu, Fei ;
Yu, Yanhao ;
Yang, Huang ;
German, Lazarus N. ;
Li, Zhenquan ;
Chen, Jianguo ;
Yang, Weiguang ;
Huang, Lu ;
Shi, Weimin ;
Wang, Linjun ;
Wang, Xudong .
ADVANCED MATERIALS, 2017, 29 (28)
[33]   Ferroelectric Polarization-Enhanced Photoelectrochemical Water Splitting in TiO2-BaTiO3 Core-Shell Nanowire Photoanodes [J].
Yang, Weiguang ;
Yu, Yanhao ;
Starr, Matthew B. ;
Yin, Xin ;
Li, Zhaodong ;
Kvit, Alexander ;
Wang, Shifa ;
Zhao, Ping ;
Wang, Xudong .
NANO LETTERS, 2015, 15 (11) :7574-7580
[34]   Fabrication of CoTiO3/g-C3N4 Hybrid Photocatalysts with Enhanced H2 Evolution: Z-Scheme Photocatalytic Mechanism Insight [J].
Ye, RongQin ;
Fang, HuaBin ;
Zheng, Yan-Zhen ;
Li, Nan ;
Wang, Yuan ;
Tao, Xia .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (22) :13879-13889
[35]   Evolution of Hollow TiO2 Nanostructures via the Kirkendall Effect Driven by Cation Exchange with Enhanced Photoelectrochemical Performance [J].
Yu, Yanhao ;
Yin, Xin ;
Kvit, Alexander ;
Wang, Xudong .
NANO LETTERS, 2014, 14 (05) :2528-2535
[36]   Toward Improving the Graphene-Semiconductor Composite Photoactivity via the Addition of Metal Ions as Generic Interfacial Mediator [J].
Zhang, Nan ;
Yang, Min-Quan ;
Tang, Zi-Rong ;
Xu, Yi-Jun .
ACS NANO, 2014, 8 (01) :623-633