Achieving Controllable CoTiO3-Encapsulated TiO2 Heterostructures for Enhanced Photoelectrochemical Water Splitting

被引:32
作者
Li, Yi [1 ]
Yang, Weiguang [1 ,2 ]
Wang, Cong [1 ]
Li, Zhenquan [1 ]
Lai, Jianming [1 ]
Wang, Longjie [1 ]
Huang, Lu [1 ]
机构
[1] Shanghai Univ, Sch Mat Sci & Engn, Dept Elect Informat Mat, Shanghai 200444, Peoples R China
[2] Henan Normal Univ, Coll Chem & Chem Engn, Collaborat Innovat Ctr Henan Prov Mot Power & Key, Xinxiang 453007, Henan, Peoples R China
基金
国家重点研发计划;
关键词
TiO2; water splitting; core-shell; TiO2/CoTiO3; heterostructure; photoresponse; photoelectrochemical; SEMICONDUCTOR NANOWIRES; HETEROJUNCTIONS; PHOTOCATALYSIS; NANOPARTICLES; PERFORMANCE; EVOLUTION; NANORODS; DRIVEN; ARRAYS;
D O I
10.1021/acsaem.9b01694
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
High light absorption capability and excellent charge carrier kinetics play a key role in determining the improved photoelectrochemical (PEC) performance. Here, to extend the photoresponse of TiO2 to the visible-light range, we encapsulated narrow band gap CoTiO3 on the surface of TiO2 nanowire arrays (NWAs) to form a core-shell heterostructure. The CoTiO3 shell thickness can be controlled by the hydrothermal reaction time. The TiO2/CoTiO3 NWAs with 9.7 nm of CoTiO3 shell thickness had the highest J(ph) (0.95 mA/cm(2) at 1.23 V versus RHE) and largest carrier concentration (1.53 x 10(21) cm(-3)), indicating about 30% and 346% increase compared to bare TiO2 NWAs, respectively. The results indicate that the improved photoresponse of TiO2 NWAs can be attributed to the broadened light absorption, effective separation of the photogenerated electron-hole pairs, and fast interfacial charge carrier transfer achieved over a TiO2/CoTiO3 core-shell heterostructure.
引用
收藏
页码:8229 / 8235
页数:13
相关论文
共 36 条
  • [21] Semiconductor Nanowires for Artificial Photosynthesis
    Liu, Chong
    Dasgupta, Neil P.
    Yang, Peidong
    [J]. CHEMISTRY OF MATERIALS, 2014, 26 (01) : 415 - 422
  • [22] A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production
    Ni, Meng
    Leung, Michael K. H.
    Leung, Dennis Y. C.
    Sumathy, K.
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2007, 11 (03) : 401 - 425
  • [23] Inorganic materials as catalysts for photochemical splitting of water
    Osterloh, Frank E.
    [J]. CHEMISTRY OF MATERIALS, 2008, 20 (01) : 35 - 54
  • [24] Design of visible-light photocatalysts by coupling of narrow bandgap semiconductors and TiO2: effect of their relative energy band positions on the photocatalytic efficiency
    Rawal, Sher Bahadur
    Bera, Sandipan
    Lee, Daeki
    Jang, Du-Jeon
    Lee, Wan In
    [J]. CATALYSIS SCIENCE & TECHNOLOGY, 2013, 3 (07) : 1822 - 1830
  • [25] Visible light sensitisation of titanium dioxide using a phenylene vinylene polymer
    Savenije, TJ
    Warman, JM
    Goossens, A
    [J]. CHEMICAL PHYSICS LETTERS, 1998, 287 (1-2) : 148 - 153
  • [26] OXIDE SEMICONDUCTORS IN PHOTOELECTROCHEMICAL CONVERSION OF SOLAR-ENERGY
    SCAIFE, DE
    [J]. SOLAR ENERGY, 1980, 25 (01) : 41 - 54
  • [27] Measurement method for carrier concentration in TiO2 via the Mott-Schottky approach
    Sellers, Meredith C. K.
    Seebauer, Edmund G.
    [J]. THIN SOLID FILMS, 2011, 519 (07) : 2103 - 2110
  • [28] Sustainable hydrogen production
    Turner, JA
    [J]. SCIENCE, 2004, 305 (5686) : 972 - 974
  • [29] One-Dimensional Titanium Dioxide Nanomaterials: Nanowires, Nanorods, and Nanobelts
    Wang, Xudong
    Li, Zhaodong
    Shi, Jian
    Yu, Yanhao
    [J]. CHEMICAL REVIEWS, 2014, 114 (19) : 9346 - 9384
  • [30] Photoelectrochemical Water Splitting Using Dense and Aligned TiO2 Nanorod Arrays
    Wolcott, Abraham
    Smith, Wilson A.
    Kuykendall, Tevye R.
    Zhao, Yiping
    Zhang, Jin Z.
    [J]. SMALL, 2009, 5 (01) : 104 - 111