SAR Image Despeckling Using Edge Detection and Feature Clustering in Bandelet Domain

被引:46
作者
Zhang, Wenge [1 ,2 ]
Liu, Fang [1 ,2 ]
Jiao, Licheng [2 ]
Hou, Biao [2 ]
Wang, Shuang [2 ]
Shang, Ronghua [2 ]
机构
[1] Xidian Univ, Minist Educ China, Key Lab Intelligent Percept & Image Understanding, Sch Comp Sci & Technol, Xian 710071, Peoples R China
[2] Xidian Univ, Inst Intelligent Informat Proc, Xian 710071, Peoples R China
基金
新加坡国家研究基金会; 中国国家自然科学基金;
关键词
Canny operator; edge detection; fuzzy clustering; image processing; speckle; synthetic aperture radar (SAR); translation-invariant bandelet transform; WAVELET; REDUCTION;
D O I
10.1109/LGRS.2009.2028588
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
To effectively preserve the edges of a synthetic aperture radar (SAR) image when despeckling, an algorithm with edge detection and fuzzy clustering in the translation-invariant second-generation bandelet transform (TIBT) domain is proposed in this letter. A Canny operator is first utilized to detect and remove edges from the SAR image. Then, TIBT and fuzzy C-mean clustering are employed to decompose and despeckle the edge-removed image, respectively. Finally, the removed edges are added to the reconstructed image. The algorithm suggests each coefficient in high-frequency subbands as the clustering feature, proposes a calculation method of the best clustering number, and defines the signal and noise in the clustering results. Experimental results show that the visual quality and evaluation indexes outperform the other methods with no edge preservation. The proposed algorithm effectively realizes both despeckling and edge preservation and reaches the state-of-the-art performance.
引用
收藏
页码:131 / 135
页数:5
相关论文
共 24 条
[1]  
[Anonymous], 1986, COMPUTATIONAL APPROA, DOI DOI 10.1109/TPAMI.1986.4767851
[2]  
[Anonymous], Pattern Recognition with Fuzzy Objective Function Algorithms
[3]   Adaptive wavelet thresholding for image denoising and compression [J].
Chang, SG ;
Yu, B ;
Vetterli, M .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2000, 9 (09) :1532-1546
[4]  
Coifman R., 1995, TRANSLATION INVARIAN, P125, DOI [10.1007/978-1-4612-2544-7_9, DOI 10.1007/978-1-4612-2544-7_9]
[5]   Wavelet-based statistical signal processing using hidden Markov models [J].
Crouse, MS ;
Nowak, RD ;
Baraniuk, RG .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1998, 46 (04) :886-902
[6]   Bayesian wavelet shrinkage with edge detection for SAR image despeckling [J].
Dai, M ;
Peng, C ;
Chan, AK ;
Loguinov, D .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2004, 42 (08) :1642-1648
[7]   DE-NOISING BY SOFT-THRESHOLDING [J].
DONOHO, DL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (03) :613-627
[8]   Windowed Fourier Transform for Noise Reduction of SAR Interferograms [J].
Fattahi, Heresh ;
Zoej, Mohammad Javad Valadan ;
Mobasheri, Mohammad Reza ;
Dehghani, Maryam ;
Sahebi, Mahmod Reza .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2009, 6 (03) :418-422
[9]   Advances in theory and applications of fuzzy clustering [J].
Gao, XB ;
Xie, WX .
CHINESE SCIENCE BULLETIN, 2000, 45 (11) :961-970
[10]   Automatic Detection of Terrain Surface Changes After Wenchuan Earthquake, May 2008, From ALOS SAR Images Using 2EM-MRF Method [J].
Jin, Ya-Qiu ;
Wang, Dafang .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2009, 6 (02) :344-348