Convergence analysis of orthogonal spline collocation for elliptic boundary value problems

被引:43
作者
Bialecki, B [1 ]
机构
[1] Colorado Sch Mines, Dept Math & Comp Sci, Golden, CO 80401 USA
关键词
elliptic boundary value problems; piecewise polynomials; Gauss points; orthogonal spline collocation; Sobolev spaces;
D O I
10.1137/S0036142996305406
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Existence, uniqueness, and optimal order H-2, H-1, and L-2 error bounds are established for the orthogonal spline collocation solution of a Dirichlet boundary value problem on the unit square. The linear, elliptic, nonself-adjoint, partial differential equation is given in nondivergence form. The approximate solution, which is a tensor product of continuously differentiable piecewise polynomials of degree r greater than or equal to 3, is determined by satisfying the partial differential equation at the nodes of a composite Gauss quadrature.
引用
收藏
页码:617 / 631
页数:15
相关论文
共 10 条
[1]   H(1)-NORM ERROR-BOUNDS FOR PIECEWISE HERMITE BICUBIC ORTHOGONAL SPLINE COLLOCATION SCHEMES FOR ELLIPTIC BOUNDARY-VALUE-PROBLEMS [J].
BIALECKI, B ;
CAI, XC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1994, 31 (04) :1128-1146
[2]   BOUNDS FOR A CLASS OF LINEAR FUNCTIONALS WITH APPLICATIONS TO HERMITE INTERPOLATION [J].
BRAMBLE, JH ;
HILBERT, SR .
NUMERISCHE MATHEMATIK, 1971, 16 (04) :362-&
[3]  
CIARLET P. G., 1978, The Finite Element Method for Elliptic Problems
[4]  
DILLERY DS, 1994, THESIS U KENTUCKY
[5]  
DOUGLAS J, 1974, LECT NOTES MATH, V385
[6]  
Ladyzhenskaya O., 1968, LINEAR QUASILINEAR E
[7]  
LOU ZM, 1996, THESIS U KENTUCKY
[8]   A C-1 FINITE-ELEMENT COLLOCATION METHOD FOR ELLIPTIC-EQUATIONS [J].
PERCELL, P ;
WHEELER, MF .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1980, 17 (05) :605-622
[9]   ORTHOGONAL COLLOCATION FOR ELLIPTIC PARTIAL-DIFFERENTIAL EQUATIONS [J].
PRENTER, PM ;
RUSSELL, RD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1976, 13 (06) :923-939
[10]  
SCHATZ AH, 1974, MATH COMPUT, V28, P959, DOI 10.1090/S0025-5718-1974-0373326-0