Chaos control in a pendulum system with excitations and phase shift

被引:10
作者
Chen, Xianwei [1 ,2 ]
Jing, Zhujun [2 ,3 ]
Fu, Xiangling [1 ]
机构
[1] Hunan Univ Sci & Technol, Sch Math & Computat Sci, Xiangtan 411201, Peoples R China
[2] Hunan Normal Univ, Coll Math & Comp Sci, Key Lab High Performance Comp & Stochast Informat, Minist Educ China, Changsha 410081, Hunan, Peoples R China
[3] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Pendulum equation; Phase shift; Bifurcation; Chaos control; Melnikov methods; COMPLEX DYNAMICS; BIFURCATION; EQUATION;
D O I
10.1007/s11071-014-1441-y
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Melnikov methods are used for suppressing homoclinic and heteroclinic chaos of a pendulum system with a phase shift and excitations. This method is based on the addition of adjustable amplitude and phase-difference of parametric excitation. Theoretically, we give the criteria of suppression of homoclinic and heteroclinic chaos, respectively. Numerical simulations are given to illustrate the effect of the chaos control in this system. Moreover, we calculate the maximum Lyapunov exponents (LEs) in parameter plane, and study how to vary the maximum LE when the parametric frequency varies.
引用
收藏
页码:317 / 327
页数:11
相关论文
共 27 条
[21]   CONTROLLING CHAOS [J].
OTT, E ;
GREBOGI, C ;
YORKE, JA .
PHYSICAL REVIEW LETTERS, 1990, 64 (11) :1196-1199
[22]   Chaos control in a nonlinear pendulum using a semi-continuous method [J].
Pereira-Pinto, FHI ;
Ferreira, AM ;
Savi, MA .
CHAOS SOLITONS & FRACTALS, 2004, 22 (03) :653-668
[23]   USING CHAOS TO DIRECT TRAJECTORIES TO TARGETS [J].
SHINBROT, T ;
OTT, E ;
GREBOGI, C ;
YORKE, JA .
PHYSICAL REVIEW LETTERS, 1990, 65 (26) :3215-3218
[24]   Chaos control of chaotic pendulum system [J].
Wang, RQ ;
Jing, ZJ .
CHAOS SOLITONS & FRACTALS, 2004, 21 (01) :201-207
[25]   Dynamics of a pendulum with feedforward and feedback control [J].
Yagasaki, K .
JSME INTERNATIONAL JOURNAL SERIES C-MECHANICAL SYSTEMS MACHINE ELEMENTS AND MANUFACTURING, 1998, 41 (03) :545-554
[26]   Controlling chaos in a pendulum subjected to feed forward and feedback control [J].
Yagasaki, K ;
Uozumi, T .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1997, 7 (12) :2827-2835
[27]   Inhibition of chaos in a pendulum equation [J].
Yang, Jianping ;
Jing, Zhujun .
CHAOS SOLITONS & FRACTALS, 2008, 35 (04) :726-737