Stability of delocalized nonlinear vibrational modes in graphene lattice

被引:18
作者
Abdullina, Dina U. [1 ]
Semenova, Maria N. [2 ]
Semenov, Aleksander S. [2 ]
Korznikova, Elena A. [3 ,4 ]
Dmitriev, Sergey V. [3 ,5 ]
机构
[1] Bashkir State Univ, 32 Zaki Validy Str, Ufa 450076, Russia
[2] North Eastern Fed Univ, Mirny Polytech Inst Branch, 5-1 Tikhonov Str, Sakha 678170, Yakutia, Russia
[3] RAS, Ufa Fed Res Ctr, Inst Mol & Crystal Phys, 71 October Ave, Ufa 450054, Russia
[4] Ufa State Aviat Tech Univ, 12 Marx Str, Ufa 450008, Russia
[5] Natl Res Tomsk State Univ, 36 Lenin Ave, Tomsk 634050, Russia
基金
俄罗斯基础研究基金会; 俄罗斯科学基金会;
关键词
Statistical and Nonlinear Physics; GAP DISCRETE BREATHERS; MECHANICAL-PROPERTIES; SYSTEMS; CARBON; CHAIN;
D O I
10.1140/epjb/e2019-100436-y
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Crystal lattices support delocalized nonlinear vibrational modes (DNVMs), which are determined solely by the lattice point symmetry, and are exact solutions of the equations of atomic motion for any interatomic potential. DNVMs are interesting for a number of reasons. In particular, DNVM instability can result in the formation of localized vibrational modes concentrating a significant part of the lattice energy. In some cases, localized vibrational modes can be obtained by imposing localizing functions upon DNVM. In this regard, stability of DNVMs is an important issue. In this paper, molecular dynamics is employed to address stability of all four delocalized modes in a graphene lattice in the presence of small perturbations both in the plane and normal to the plane of the lattice. When DNVM amplitude is above the stability threshold, atom trajectories deviate from the mode pattern exponentially in time. Critical exponents are calculated for the in- and out-of-plane displacements. Stability threshold amplitudes are established. Interestingly, in three of the studied DNVMs the in-plane displacements diverge faster, but in one of them the instability develops through the out-of-plane displacements. This result can be explained by the difference in atomic vibration patterns of DNVMs. Reported results refine our understanding of the nonlinear dynamics of graphene lattice and can be useful in the design of electro-mechanical resonators and sensors.
引用
收藏
页数:5
相关论文
共 42 条
[1]   A review on mechanics and mechanical properties of 2D materials-Graphene and beyond [J].
Akinwande, Deji ;
Brennan, Christopher J. ;
Bunch, J. Scott ;
Egberts, Philip ;
Felts, Jonathan R. ;
Gao, Huajian ;
Huang, Rui ;
Kim, Joon-Seok ;
Li, Teng ;
Li, Yao ;
Liechti, Kenneth M. ;
Lu, Nanshu ;
Park, Harold S. ;
Reed, Evan J. ;
Wang, Peng ;
Yakobson, Boris I. ;
Zhang, Teng ;
Zhang, Yong-Wei ;
Zhou, Yao ;
Zhu, Yong .
EXTREME MECHANICS LETTERS, 2017, 13 :42-77
[2]  
Baimova JA, 2015, REV ADV MATER SCI, V42, P68
[3]   Mechanical properties of bulk carbon nanostructures: effect of loading and temperature [J].
Baimova, Julia A. ;
Liu, Bo ;
Dmitriev, Sergey V. ;
Srikanth, Narasimalu ;
Zhou, Kun .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (36) :19505-19513
[4]   Graphene Photonics, Plasmonics, and Broadband Optoelectronic Devices [J].
Bao, Qiaoliang ;
Loh, Kian Ping .
ACS NANO, 2012, 6 (05) :3677-3694
[5]   Gap discrete breathers in strained boron nitride [J].
Barani, Elham ;
Korznikova, Elena A. ;
Chetverikov, Alexander P. ;
Zhou, Kun ;
Dmitriev, Sergey V. .
PHYSICS LETTERS A, 2017, 381 (41) :3553-3557
[6]   Transverse discrete breathers in unstrained graphene [J].
Barani, Elham ;
Lobzenko, Ivan P. ;
Korznikova, Elena A. ;
Soboleva, Elvira G. ;
Dmitriev, Sergey V. ;
Zhou, Kun ;
Marjaneh, Aliakbar Moradi .
EUROPEAN PHYSICAL JOURNAL B, 2017, 90 (03)
[7]   LOCALIZED VIBRATIONS OF HOMOGENEOUS ANHARMONIC CHAINS [J].
BURLAKOV, VM ;
KISELEV, SA ;
RUPASOV, VI .
PHYSICS LETTERS A, 1990, 147 (2-3) :130-134
[8]  
BURLAKOV VM, 1990, JETP LETT+, V51, P544
[9]   Nonlinear normal mode interactions in the SF6 molecule studied with the aid of density functional theory [J].
Chechin, G. ;
Ryabov, D. ;
Shcherbinin, S. .
PHYSICAL REVIEW E, 2015, 92 (01)
[10]   Nonlinear vibrational modes in graphene: group-theoretical results [J].
Chechin, G. M. ;
Ryabov, D. S. ;
Shcherbinin, S. A. .
LETTERS ON MATERIALS-PIS MA O MATERIALAKH, 2016, 6 (01) :9-15