LOCAL BEHAVIOR OF SOLUTIONS TO A FRACTIONAL EQUATION WITH ISOLATED SINGULARITY AND CRITICAL SERRIN EXPONENT

被引:2
作者
Wei, Juncheng [1 ]
Wu, Ke [2 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
[2] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
基金
加拿大自然科学与工程研究理事会;
关键词
Serrin exponent; isolated singularity; local behavior; Caffarelli-Silvestre extension; removable singularity; SEMILINEAR ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS; ASYMPTOTICS; EXISTENCE;
D O I
10.3934/dcds.2022044
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the local behavior of positive singular solutions to the equation (-Delta)(sigma) u = u(n/n-2 sigma )in B-1\{0} where (-Delta)(sigma) is the fractional Laplacian operator, 0 < sigma < 1 and n/n-2 sigma the critical Serrin exponent. We show that either u can be extended as a continuous function near the origin or there exist two positive constants c(1) and c(2) such that c(1)vertical bar x vertical bar(2 sigma-n)(- ln vertical bar x vertical bar) - (n - 2 sigma/2 sigma) <= u(x) <= c(2)vertical bar x vertical bar)(-2 sigma-n )(-ln vertical bar x vertical bar)(-n-2 sigma/2 sigma) in B-1\{0}.
引用
收藏
页码:4031 / 4050
页数:20
相关论文
共 21 条
[1]   ON HIGHER-DIMENSIONAL SINGULARITIES FOR THE FRACTIONAL YAMABE PROBLEM: A NONLOCAL MAZZEO-PACARD PROGRAM [J].
Ao, Weiwei ;
Chan, Hardy ;
Delatorre, Azahara ;
Fontelos, Marco A. ;
del Mar Gonzalez, Maria ;
Wei, Juncheng .
DUKE MATHEMATICAL JOURNAL, 2019, 168 (17) :3297-3411
[2]   Existence of positive weak solutions for fractional Lane-Emden equations with prescribed singular sets [J].
Ao, Weiwei ;
Chan, Hardy ;
del Mar Gonzalez, Maria ;
Wei, Juncheng .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (06)
[4]   LOCAL BEHAVIOR OF SOLUTIONS OF SOME ELLIPTIC-EQUATIONS [J].
AVILES, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 108 (02) :177-192
[5]   NONLINEAR ELLIPTIC-EQUATIONS ON COMPACT RIEMANNIAN-MANIFOLDS AND ASYMPTOTICS OF EMDEN EQUATIONS [J].
BIDAUTVERON, MF ;
VERON, L .
INVENTIONES MATHEMATICAE, 1991, 106 (03) :489-539
[6]   ASYMPTOTIC SYMMETRY AND LOCAL BEHAVIOR OF SEMILINEAR ELLIPTIC-EQUATIONS WITH CRITICAL SOBOLEV GROWTH [J].
CAFFARELLI, LA ;
GIDAS, B ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (03) :271-297
[7]   An extension problem related to the fractional Laplacian [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1245-1260
[8]   Local Analysis of Solutions of Fractional Semi-Linear Elliptic Equations with Isolated Singularities [J].
Caffarelli, Luis ;
Jin, Tianling ;
Sire, Yannick ;
Xiong, Jingang .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2014, 213 (01) :245-268
[9]   An analytic construction of singular solutions related to a critical Yamabe problem [J].
Chan, Hardy ;
DelaTorre, Azahara .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2020, 45 (11) :1621-1646
[10]  
Chen C.-C., 1999, J. Geom. Anal., V9, P221, DOI [10.1007/BF02921937, DOI 10.1007/BF02921937]