Physiological and Molecular Understanding of Bacterial Polysaccharide Monooxygenases

被引:35
作者
Agostoni, Marco [1 ]
Hangasky, John A. [1 ]
Marletta, Michael A. [1 ,2 ,3 ]
机构
[1] Univ Calif Berkeley, Calif Inst Quantitat Biosci QB3, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
Listeria monocytogenes; Pseudomonas; cellulose; cellulolytic enzymes; chitin; endosymbionts; infectious disease; monooxygenases; polysaccharides; CHITIN-BINDING PROTEIN; COLONIZATION FACTOR GBPA; CYCLIC DI-GMP; VIBRIO-CHOLERAE; PSEUDOMONAS-AERUGINOSA; STREPTOMYCES-COELICOLOR; LISTERIA-MONOCYTOGENES; CELL-WALL; CELLOBIOSE DEHYDROGENASE; CELLULOSE DEGRADATION;
D O I
10.1128/MMBR.00015-17
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Bacteria have long been known to secrete enzymes that degrade cellulose and chitin. The degradation of these two polymers predominantly involves two enzyme families that work synergistically with one another: glycoside hydrolases (GHs) and polysaccharide monooxygenases (PMOs). Although bacterial PMOs are a relatively recent addition to the known biopolymer degradation machinery, there is an extensive amount of literature implicating PMO in numerous physiological roles. This review focuses on these diverse and physiological aspects of bacterial PMOs, including facilitating endosymbiosis, conferring a nutritional advantage, and enhancing virulence in pathogenic organisms. We also discuss the correlation between the presence of PMOs and bacterial lifestyle and speculate on the advantages conferred by PMOs under these conditions. In addition, the molecular aspects of bacterial PMOs, as well as the mechanisms regulating PMO expression and the function of additional domains associated with PMOs, are described. We anticipate that increasing research efforts in this field will continue to expand our understanding of the molecular and physiological roles of bacterial PMOs.
引用
收藏
页数:16
相关论文
共 153 条
[71]   Quantum mechanical calculations suggest that lytic polysaccharide monooxygenases use a copper-oxyl, oxygen-rebound mechanism [J].
Kim, Seonah ;
Stahlberg, Jerry ;
Sandgren, Mats ;
Paton, Robert S. ;
Beckham, Gregg T. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (01) :149-154
[72]   A colonization factor links Vibrio cholerae environmental survival and human infection [J].
Kirn, TJ ;
Jude, BA ;
Taylor, RK .
NATURE, 2005, 438 (7069) :863-866
[73]   The Streptomyces reticuli α-chitin-binding protein CHB2 and its gene [J].
Kolbe, S ;
Fischer, S ;
Becirevic, A ;
Hinz, P ;
Schrempf, H .
MICROBIOLOGY-SGM, 1998, 144 :1291-1297
[74]   Extracellular electron transfer systems fuel cellulose oxidative degradation [J].
Kracher, Daniel ;
Scheiblbrandner, Stefan ;
Felice, Alfons K. G. ;
Breslmayr, Erik ;
Preims, Marita ;
Ludwicka, Karolina ;
Haltrich, Dietmar ;
Eijsink, Vincent G. H. ;
Ludwig, Roland .
SCIENCE, 2016, 352 (6289) :1098-1101
[75]   Oxidoreductive Cellulose Depolymerization by the Enzymes Cellobiose Dehydrogenase and Glycoside Hydrolase 61 [J].
Langston, James A. ;
Shaghasi, Tarana ;
Abbate, Eric ;
Xu, Feng ;
Vlasenko, Elena ;
Sweeney, Matt D. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2011, 77 (19) :7007-7015
[76]   Chitin hydrolysis by Listeria spp., including L. monocytogenes [J].
Leisner, J. J. ;
Larsen, M. H. ;
Jorgensen, R. L. ;
Brondsted, L. ;
Thomsen, L. E. ;
Ingmer, H. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2008, 74 (12) :3823-3830
[77]  
Lenfant N, 2017, CARBOHYDR RES
[78]   Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes [J].
Levasseur, Anthony ;
Drula, Elodie ;
Lombard, Vincent ;
Coutinho, Pedro M. ;
Henrissat, Bernard .
BIOTECHNOLOGY FOR BIOFUELS, 2013, 6
[79]  
Lo N, 2011, BIOLOGY OF TERMITES: A MODERN SYNTHESIS, P51, DOI 10.1007/978-90-481-3977-4_3
[80]   Activation of bacterial lytic polysaccharide monooxygenases with cellobiose dehydrogenase [J].
Loose, Jennifer S. M. ;
Forsberg, Zarah ;
Kracher, Daniel ;
Scheiblbrandner, Stefan ;
Ludwig, Roland ;
Eijsink, Vincent G. H. ;
Vaaje-Kolstad, Gustav .
PROTEIN SCIENCE, 2016, 25 (12) :2175-2186