On the number of abelian left symmetric algebras

被引:4
作者
Dekimpe, K [1 ]
Ongenae, V [1 ]
机构
[1] Katholieke Univ Leuven, B-8500 Kortrijk, Belgium
关键词
left symmetric algebra; simply transitive affine action;
D O I
10.1090/S0002-9939-00-05484-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove that there are infinitely many abelian left symmetric algebras in dimensions greater than or equal to 6. Equivalently this means that there are, up to affine conjugation, infinitely many simply transitive affine actions of R-k, for k greater than or equal to 6. This is a result which is usually credited to A.T. Vasquez, but for which there is no proof in the literature.
引用
收藏
页码:3191 / 3200
页数:10
相关论文
共 13 条
[1]   SIMPLY TRANSITIVE GROUPS OF AFFINE MOTIONS [J].
AUSLANDER, L .
AMERICAN JOURNAL OF MATHEMATICS, 1977, 99 (04) :809-826
[2]  
BENOIST Y, 1995, J DIFFER GEOM, V41, P21
[3]   Affine structures on nilmanifolds [J].
Burde, D .
INTERNATIONAL JOURNAL OF MATHEMATICS, 1996, 7 (05) :599-616
[4]   MODULES FOR CERTAIN LIE-ALGEBRAS OF MAXIMAL CLASS [J].
BURDE, D ;
GRUNEWALD, F .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1995, 99 (03) :239-254
[5]   The five-dimensional complete left-symmetric algebra structures compatible with an Abelian Lie algebra structure [J].
Dekimpe, K ;
Igodt, P ;
Ongenae, V .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1997, 263 :349-375
[6]   Affine structures on a class of virtually nilpotent groups [J].
Dekimpe, K ;
Malfait, W .
TOPOLOGY AND ITS APPLICATIONS, 1996, 73 (02) :97-119
[7]   3-DIMENSIONAL AFFINE CRYSTALLOGRAPHIC GROUPS [J].
FRIED, D ;
GOLDMAN, WM .
ADVANCES IN MATHEMATICS, 1983, 47 (01) :1-49
[8]   AFFINE MANIFOLDS WITH NILPOTENT HOLONOMY [J].
FRIED, D ;
GOLDMAN, W ;
HIRSCH, MW .
COMMENTARII MATHEMATICI HELVETICI, 1981, 56 (04) :487-523
[9]  
Helmstetter J., 1979, ANN I FOURIER GRENOB, V29, P17, DOI [10.5802/aif.764, DOI 10.5802/AIF.764]
[10]  
KIM H, 1986, J DIFFER GEOM, V24, P373