Unconditional uniqueness results for the nonlinear Schrodinger equation

被引:16
作者
Herr, Sebastian [1 ]
Sohinger, Vedran [2 ]
机构
[1] Univ Bielefeld, Fac Math, Postfach 10 01 31, D-33501 Bielefeld, Germany
[2] Univ Warwick, Math Inst, Zeeman Bldg, Coventry CV4 7AL, W Midlands, England
关键词
Nonlinear Schrodinger equation; unconditional uniqueness; Gross-Pitaevskii hierarchy; Fourier-Lebesgue spaces; GROSS-PITAEVSKII HIERARCHY; LOCAL WELL-POSEDNESS; WAVE-EQUATIONS; DYNAMICS; QUANTUM; DERIVATION; SPACES; NLS;
D O I
10.1142/S021919971850058X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the problem of unconditional uniqueness of solutions to the cubic nonlinear Schrodinger equation (NLS). We introduce a new strategy to approach this problem on bounded domains, in particular on rectangular tori. It is a known fact that solutions to the cubic NLS give rise to solutions of the Gross-Pitaevskii (GP) hierarchy, which is an infinite-dimensional system of linear equations. By using the uniqueness analysis of the GP hierarchy, we obtain new unconditional uniqueness results for the cubic NLS on rectangular tori, which cover the full scaling-subcritical regime in high dimensions. In fact, we prove a more general result which is conditional on the domain. In addition, we observe that well-posedness of the cubic NLS in Fourier-Lebesgue spaces implies unconditional uniqueness.
引用
收藏
页数:33
相关论文
共 44 条
[1]  
Ammari Z., PREPRINT
[2]  
Bourgain J., 1993, GEOM FUNCT ANAL, V3, P209, DOI DOI 10.1007/BF01895688
[3]   The proof of the l2 Decoupling Conjecture [J].
Bourgain, Jean ;
Demeter, Ciprian .
ANNALS OF MATHEMATICS, 2015, 182 (01) :351-389
[4]   Stability and Unconditional Uniqueness of Solutions for Energy Critical Wave Equations in High Dimensions [J].
Bulut, Aynur ;
Czubak, Magdalena ;
Li, Dong ;
Pavlovic, Natasa ;
Zhang, Xiaoyi .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2013, 38 (04) :575-607
[5]   Bilinear eigenfunction estimates and the nonlinear Schrodinger equation on surfaces [J].
Burq, N ;
Gérard, P ;
Tzvetkov, N .
INVENTIONES MATHEMATICAE, 2005, 159 (01) :187-223
[6]  
Cazenave T., 2003, COURANT I MATH SCI, P323
[7]   LOCAL WELL-POSEDNESS FOR THE H2-CRITICAL NONLINEAR SCHRODINGER EQUATION [J].
Cazenave, Thierry ;
Fang, Daoyuan ;
Han, Zheng .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (11) :7911-7934
[8]   Unconditional Uniqueness for the Cubic Gross-Pitaevskii Hierarchy via Quantum de Finetti [J].
Chen, Thomas ;
Hainzl, Christian ;
Pavlovic, Natasa ;
Seiringer, Robert .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2015, 68 (10) :1845-1884
[9]   ON THE CAUCHY PROBLEM FOR FOCUSING AND DEFOCUSING GROSS-PITAEVSKII HIERARCHIES [J].
Chen, Thomas ;
Pavlovic, Natasa .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 27 (02) :715-739
[10]   Multilinear estimates for periodic KdV equations, and applications [J].
Colliander, J ;
Keel, M ;
Staffilani, G ;
Takaoka, H ;
Tao, T .
JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 211 (01) :173-218