NOTES ON CRITICAL ALMOST HERMITIAN STRUCTURES

被引:7
作者
Lee, Jung Chan [1 ]
Park, Jeong Hyeong [1 ]
Sekigawa, Kouei [2 ]
机构
[1] Sungkyunkwan Univ, Dept Math, Suwon 440746, South Korea
[2] Niigata Univ, Fac Sci, Dept Math, Niigata 9502181, Japan
关键词
critical almost Hermitian structure; Einstein-Hilbert functional;
D O I
10.4134/BKMS.2010.47.1.167
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We discuss the critical points of the functional F(lambda,mu)(J, g) = integral(M)(lambda tau+mu tau*)dv(g) on the spaces of all almost Hermitian structures AH(M) with (lambda, mu) is an element of R(2) - (0, 0), where tau and tau* being the scalar curvature and the *-scalar curvature of (J, g), respectively. We shall give several characterizations of Kahler structure for some special classes of almost Hermitian manifolds, in terms of the critical points of the functionals F(lambda,mu)(J, g) on AH(M). Further, we provide the almost Hermitian analogy of the Hilbert's result.
引用
收藏
页码:167 / 178
页数:12
相关论文
共 11 条
[1]  
[Anonymous], 1976, TOHOKU MATH J, V28, P601
[2]  
Blair D. E., 1986, Contemp. Math., V51, P23
[3]   STRUCTURE OF NEARLY KAHLER MANIFOLDS [J].
GRAY, A .
MATHEMATISCHE ANNALEN, 1976, 223 (03) :233-248
[4]  
Gray A., 1980, ANN MAT PURA APPL, V123, P35, DOI [DOI 10.1007/BF01796539, 10.1007/BF01796539]
[5]  
Hilbert D., 1915, Nachrichten K. Gesellschaft Wiss. Gottingen, Math.-phys. Klasse, P395
[6]  
KODA T, 1995, INDIAN J PURE AP MAT, V26, P679
[7]  
Koto S., 1960, J MATH SOC JAPAN, V12, P422
[8]  
OGURO T, 2008, C MATH, V111, P205
[9]  
Oguro T., 2007, TOPICS CONT DIFFEREN, P269
[10]  
SEKIGAWA K, 1979, KODAI MATH J, V2, P384