Renormalization of graphene bands by many-body interactions

被引:60
作者
Bostwick, Aaron
Ohta, Taisuke
McChesney, Jessica L.
Seyller, Thomas
Horn, Karsten
Rotenberg, Eli [1 ]
机构
[1] EO Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA
[2] Max Planck Gesell, Fritz Haber Inst, Dept Mol Phys, D-14195 Berlin, Germany
[3] Montana State Univ, Dept Phys, Bozeman, MT 59717 USA
[4] Univ Erlangen Nurnberg, Lehrstuhl Tech Phys, Inst Phys Kondensierten Materie, D-91058 Erlangen, Germany
关键词
graphene; electronic band structure; ANGLE-RESOLVED PHOTOEMISSION; BERRYS PHASE; GRAPHITE; SUPERCONDUCTIVITY; ENERGY; SCATTERING; LIFETIME; ABSENCE; GAS;
D O I
10.1016/j.ssc.2007.04.034
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We have determined the electronic bandstructure of clean and potassium-doped single layer graphene, and fitted the graphene pi bands to a first- and third-nearest-neighbor tight binding model. We characterized the quasiparticle dynamics using angle resolved photoemission spectroscopy. The dynamics reflect the decay of quasiparticles (holes) into collective excitations, namely plasmons, phonons, and electron-hole pairs. Electron-hole pair decay is found to be a minimum at the Dirac energy E-D while electron-plasmon scattering is maximum around the same energy. Taking the topology of the bands around the Dirac energy for n-doped graphene into account, we show that these results follow from kinematic constraints imposed by graphene's gapless energy spectrum around the Dirac energy. We also show that the electron-phonon scattering in lightly doped graphene is around 6 times larger than the predictions of published calculations. (c) 2007 Published by Elsevier Ltd.
引用
收藏
页码:63 / 71
页数:9
相关论文
共 52 条
[1]   LATTICE-DYNAMICAL MODEL FOR GRAPHITE [J].
ALJISHI, R ;
DRESSELHAUS, G .
PHYSICAL REVIEW B, 1982, 26 (08) :4514-4522
[2]   Impurity scattering in carbon nanotubes - Absence of back scattering [J].
Ando, T ;
Nakanishi, T .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1998, 67 (05) :1704-1713
[3]   Berry's phase and absence of back scattering in carbon nanotubes [J].
Ando, T ;
Nakanishi, T ;
Saito, R .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1998, 67 (08) :2857-2862
[4]   Photoemission study of K on graphite [J].
Bennich, P ;
Puglia, C ;
Brühwiler, PA ;
Nilsson, A ;
Maxwell, AJ ;
Sandell, A ;
Mårtensson, N ;
Rudolf, P .
PHYSICAL REVIEW B, 1999, 59 (12) :8292-8304
[5]   Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics [J].
Berger, C ;
Song, ZM ;
Li, TB ;
Li, XB ;
Ogbazghi, AY ;
Feng, R ;
Dai, ZT ;
Marchenkov, AN ;
Conrad, EH ;
First, PN ;
de Heer, WA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (52) :19912-19916
[6]   Electronic confinement and coherence in patterned epitaxial graphene [J].
Berger, Claire ;
Song, Zhimin ;
Li, Xuebin ;
Wu, Xiaosong ;
Brown, Nate ;
Naud, Cecile ;
Mayou, Didier ;
Li, Tianbo ;
Hass, Joanna ;
Marchenkov, Atexei N. ;
Conrad, Edward H. ;
First, Phillip N. ;
de Heer, Wait A. .
SCIENCE, 2006, 312 (5777) :1191-1196
[7]   Quasiparticle dynamics in graphene [J].
Bostwick, Aaron ;
Ohta, Taisuke ;
Seyller, Thomas ;
Horn, Karsten ;
Rotenberg, Eli .
NATURE PHYSICS, 2007, 3 (01) :36-40
[8]   Theoretical explanation of superconductivity in C6Ca -: art. no. 237002 [J].
Calandra, M ;
Mauri, F .
PHYSICAL REVIEW LETTERS, 2005, 95 (23)
[9]   Origin of superconductivity of CaC6 and of other intercalated graphites [J].
Calandra, Matteo ;
Mauri, Francesco .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2006, 243 (13) :3458-3463
[10]   Angle-resolved photoemission studies of the cuprate superconductors [J].
Damascelli, A ;
Hussain, Z ;
Shen, ZX .
REVIEWS OF MODERN PHYSICS, 2003, 75 (02) :473-541