US Dollar's Influence on Indian Gold Price: Assessment Using Artificial Neural Network

被引:1
|
作者
Bogale, Deepa [1 ]
Muley, Aniket [2 ]
Bhalchandra, Parag [1 ]
Kulkarni, Govind [1 ]
机构
[1] Swami Ramanand Teerth Marathwada Univ, Sch Computat Sci, Nanded 431606, Maharashtra, India
[2] Swami Ramanand Teerth Marathwada Univ, Sch Math Sci, Nanded 431606, Maharashtra, India
来源
INFORMATION AND COMMUNICATION TECHNOLOGY FOR COMPETITIVE STRATEGIES | 2019年 / 40卷
关键词
ANN; Back propagation; Gold price; US dollar price;
D O I
10.1007/978-981-13-0586-3_8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The main focus of this study is to highlight the inter-relationship between US dollar's rate and gold price in India. To study the influence of US dollar on gold price in India. The aim of this investigation is to identify the behavior of gold price data pattern. To study the functional relationship between the gold price and influencing parameter viz. US dollar price using artificial neural network (ANN) modelling technique. The back propagation algorithm is employed for analyzing the gold prices. In this research, taking the output of the neural network, it has been implemented using R software.
引用
收藏
页码:81 / 88
页数:8
相关论文
共 50 条
  • [1] Quality Assessment of Lettuce using Artificial Neural Network
    Valenzuela, Ira C.
    Puno, John Carlo V.
    Bandala, Argel A.
    Baldovino, Renann G.
    de Luna, Robert G.
    De Ocampo, Anton Louise
    Cuello, Joel
    Dadios, Elmer P.
    2017 IEEE 9TH INTERNATIONAL CONFERENCE ON HUMANOID, NANOTECHNOLOGY, INFORMATION TECHNOLOGY, COMMUNICATION AND CONTROL, ENVIRONMENT AND MANAGEMENT (IEEE HNICEM), 2017,
  • [2] Voltage Stability Assessment using Artificial Neural Network
    Sharma, Ankit Kumar
    Saxena, Akash
    Soni, Bhanu Pratap
    Gupta, Vikas
    2018 IEEMA ENGINEER INFINITE CONFERENCE (ETECHNXT), 2018,
  • [3] Transient stability assessment using artificial neural network
    Sanyal, KK
    PROCEEDINGS OF THE 2004 IEEE INTERNATIONAL CONFERENCE ON ELECTRIC UTILITY DEREGULATION, RESTRUCTURING AND POWER TECHNOLOGIES, VOLS 1 AND 2, 2004, : 633 - 637
  • [4] Price prediction of residential buildings using random forest and artificial neural network
    Ashraf A.
    Rady M.
    Mahfouz S.Y.
    HBRC Journal, 2024, 20 (01) : 23 - 41
  • [5] Assessment of shallow landslide susceptibility using an artificial neural network
    Zeng B.
    Chen X.
    Arabian Journal of Geosciences, 2021, 14 (6)
  • [6] Stock price forecasting and news sentiment analysis model using artificial neural network
    Yadav S.
    Suhag R.S.
    Sriram K.V.
    International Journal of Business Intelligence and Data Mining, 2021, 19 (01) : 113 - 133
  • [7] Forecasting Stock Price Using Macroeconomic Variables: A Hybrid ARDL, ARIMA and Artificial Neural Network
    Abounoori, Esmaiel
    Tazehabadi, Afsaneh Ghasemi
    2009 INTERNATIONAL CONFERENCE ON INFORMATION AND FINANCIAL ENGINEERING, PROCEEDINGS, 2009, : 149 - 153
  • [8] Exploring the effectiveness of a multilayer neural network model for gold price prediction
    Gbadamosi, Saheed Lekan
    Nwulu, Nnamdi I.
    Akinola, Solomon Oluwole
    PRZEGLAD ELEKTROTECHNICZNY, 2024, 100 (03): : 157 - 161
  • [9] Analysis of Comparisons for Forecasting Gold Price using Neural Network, Radial Basis Function Network and Support Vector Regression
    Suranart, Khanoksin
    Kiattisin, Supaporn
    Leelasantitham, Adisorn
    2014 FOURTH JOINT INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY, ELECTRONIC AND ELECTRICAL ENGINEERING (JICTEE 2014), 2014,
  • [10] Node Localization for Indoor Tracking using Artificial Neural Network
    Samanta, Riya
    Kumari, Chandni
    Deb, Novarun
    Bose, Sagar
    Cortesi, Agostino
    Chaki, Nabendu
    2018 THIRD INTERNATIONAL CONFERENCE ON FOG AND MOBILE EDGE COMPUTING (FMEC), 2018,